• Title/Summary/Keyword: Mathematica Model

Search Result 20, Processing Time 0.022 seconds

An Effective Quasi-static Modeling of the Piezoelectric Benders (압전 벤더의 효과적인 모델링 기법)

  • Park, Jong-Kyu;Moon, Won-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.133-142
    • /
    • 2004
  • In this article, the constitutive relations of three types of piezoelectric benders, which are a unimorph bender, a bimorph bender and a triple-layer bender, are derived based on the beam theory under the quasi-static equilibrium condition. The relation coefficients are described as the geometry and material properties of the benders. More general constitutive relations involving fixed-free, fixed-roll, and fixed-simply supported boundary conditions under the inconsistent length condition between the piezoelectric layer and the nonpiezoelectric one are discussed. The complicated constitutive relations can be easily calculated and checked by using the symbolic function in ‘Mathematica’. The relation coefficients for the benders are plotted in three dimensional graph using the developed program.

Rayleigh wave at imperfectly corrugated interface in FGPM structure

  • K. Hemalatha;S. Kumar;A. Akshaya
    • Coupled systems mechanics
    • /
    • v.12 no.4
    • /
    • pp.337-364
    • /
    • 2023
  • The Rayleigh wave propagation is considered in the structure of the functionally graded piezoelectric material (FGPM) layer over the elastic substrate. The elastic substrate loosely bonds the layer through a corrugated interface, whereas its upper boundary is also corrugated but stress-free. Additionally, the solutions for the FGPM layer and substrate are derived using the fundamental variable separable approach to convert the partial differential equation to an ordinary differential equation. The results with boundary conditions lead to dispersion relations for the electrically open and electrically short cases in the determinant form. The outcomes have been numerically analyzed using a specific model. The findings were presented in the form of graphs, which were created using Mathematica 7. Graphs are plotted for variations in wavenumber and phase velocity. The outcomes may help measure interface defects and design Surface Acoustic Wave (SAW) devices.

Hado and Russell's Paradox (하도(河圖)와 러셀 역설)

  • Kim, Byoung-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.583-590
    • /
    • 2007
  • The significance of Han medicine (韓醫學), the Korean traditional medicine, that has lasted throughout the past couple millenniums relies upon Han Philosophy distinguished by its uniqueness. In brief, the specificity of Han medicine is characterized by unity of spirit and body, part and whole. According to this theory, when curing a frozen shoulder, it is usually cured by acupuncturing the area around the part that aches, but also doing so on the area that is totally different from the aching part such as the opposite part of the body. In fact, this can be pursued only through aspects that enable one to realize the unity of part and whole, and a ground for this possibility bases upon the crux of Eastern Philosophy, I-ching(역), such as theory of Five Elements (음양오행) and Three Pillars(삼재). In Western set theory, the issues of Class(부류) and elements(요원), whole and part were independently discussed in the area of mereology, and the question of part and whole was encountered with aporia and paradox since Greek ancient philosophy. At the turn of this century, many philosophers endeavored to pursue academic inquiry to resolve this paradox, especially by Russell and Whitehead through ${\ll}$Principia Mathematica${\gg}$ at the beginning of this century. in the process, there came out a phrase 'Russell's Paradox'. Russell himself proposed a typological resolution as an answer to the inquiry. However, 'Russell's Paradox' still remains as an aporia even till present days. During medieval period, this inquiry was even considered as 'insolubia'. Throughout this paper, 1 attempt to provide an analytic aspect on 'Russell's Paradox' from an unique thinking method and perspective of Han medicine that embodies the concept of 'unity of part and whole'. To do so, 1 suggest a physiological model in the first place depicted by diagrams of Circle 원, Quadrangle 방, Triangle 각(CQT) that portray the logic of Hado or Hotu 하도 which is 'the pattern from the river Ho'. That is to suggest that CQT원방각 of Hado can De a logical foundation that explains the notions of spirit (정신,뇌), internal organs(장부), and meridian system which functions as a solution to the question of 'Russell's Paradox'. There are precedent academic works examining the issue from philosophical aspect such as Sangil Kim's ${\ulcorner}$Han medicine과 러셀역설 해의${\lrcorner}$ Han Medicine and Resolution of Russell's Paradox(2005), and this analysis will further attempt to critically examine such works from a perspective of Han medicine.

A hybrid method for predicting the dynamic response of free-span submarine pipelines

  • Li, Tongtong;Duan, Menglan;Liang, Wei;An, Chen
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.363-375
    • /
    • 2016
  • Large numbers of submarine pipelines are laid as the world now is attaching great importance to offshore oil exploitation. Free spanning of submarine pipelines may be caused by seabed unevenness, change of topology, artificial supports, etc. By combining Iwan's wake oscillator model with the differential equation which describes the vibration behavior of free-span submarine pipelines, the pipe-fluid coupling equation is developed and solved in order to study the effect of both internal and external fluid on the vibration behavior of free-span submarine pipelines. Through generalized integral transform technique (GITT), the governing equation describing the transverse displacement is transformed into a system of second-order ordinary differential equations (ODEs) in temporal variable, eliminating the spatial variable. The MATHEMATICA built-in function NDSolve is then used to numerically solve the transformed ODE system. The good convergence of the eigenfunction expansions proved that this method is applicable for predicting the dynamic response of free-span pipelines subjected to both internal flow and external current.

The extinction probability in systems randomly varying in time

  • Pazsit, Imre;Williams, M.M.R.;Pal, Lenard
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1301-1309
    • /
    • 2017
  • The extinction probability of a branching process (a neutron chain in a multiplying medium) is calculated for a system randomly varying in time. The evolution of the first two moments of such a process was calculated previously by the authors in a system randomly shifting between two states of different multiplication properties. The same model is used here for the investigation of the extinction probability. It is seen that the determination of the extinction probability is significantly more complicated than that of the moments, and it can only be achieved by pure numerical methods. The numerical results indicate that for systems fluctuating between two subcritical or two supercritical states, the extinction probability behaves as expected, but for systems fluctuating between a supercritical and a subcritical state, there is a crucial and unexpected deviation from the predicted behaviour. The results bear some significance not only for neutron chains in a multiplying medium, but also for the evolution of biological populations in a time-varying environment.

Perturbations of Zonal and Tesseral Harmonics on Frozen Orbits of Charged Satellites

  • Fawzy Ahmed Abd El-Salam;Walid Ali Rahoma;Magdy Ibrahim El-Saftawy;Ahmed Mostafa;Elamira Hend Khattab
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.87-106
    • /
    • 2024
  • The objective of this research is to address the issue of frozen orbits in charged satellites by incorporating geopotential zonal harmonics up to J6 and the initial tesseral harmonics. The employed model starts from the first normalized Hamiltonian to calculate specific sets of long-term frozen orbits for charged satellites. To explore the frozen orbits acquired, a MATHEMATICA CODE is developed. The investigation encompasses extensive variations in orbit altitudes by employing the orbital inclination and argument of periapsis as freezing parameters. The determined ranges ensuring frozen orbits are derived from the generated figures. Three-dimensional presentations illustrating the freezing inclination in relation to eccentricity, argument of periapsis, and semi-major axis parameters are presented. Additional three-dimensional representations of the phase space for the eccentricity vector and its projection onto the nonsingular plane are examined. In all investigated scenarios, the impacts of electromagnetic (EM) field perturbations on the freezing parameters of a charged satellite are demonstrated.

Simulation of Scooped Swing in High Bar Using Lagrange's Method : A Case Study (라그랑지 방법을 이용할 철봉 몸굽혀 휘돌기 동작의 시뮬레이션)

  • Hah, Chong-Ku
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.4
    • /
    • pp.234-240
    • /
    • 2007
  • The purpose of this paper was to architecture optimal model of the scooped swing in high bar. The scooped swing was modeled to the double pendulum and was simulated with the Lagrange's equation of motion. Lagrange's method based on a energy approaching method was implemented as a equation of motion. The subject was a national man-gymnast(age 18yrs, height 153 cut mass 48 kg) and the high bar of SPIETH company was used to measure the scooped swing. Qualisys system(six MCU-240 cameras, QTM software)was used to capture data for imaging analysis. The solution of a model and data processing were solved in Mathematica5.0. The results were as follows: First model value of maximum bar displacement was longer than experimental value, that is, 0.02 m. Second, both angular pattern of segment1(HAT) had a increasing curve but curve patterns had a different concave and convex me. Third the experimental value of maximum angular angle of segment2(total leg) had larger than model value, that is, $4^{\circ}$. Conclusively, model parameters were quasi-optimized to obtain a quasi-match between simulated and actual performances. It hopes to simulate a human model by means of integrating musculoskeletal and neuromuscular system in the future study.

Flow of MHD Powell-Eyring nanofluid: Heat absorption and Cattaneo-Christov heat flux model

  • Sharif, Humaira;Khadimallah, Mohamed A.;Naeem, Muhammad Nawaz;Hussain, Muzamal;Hussain, Sajjad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.221-234
    • /
    • 2021
  • During the previous few years, phenomenon of bioconvection along with the use of nanoparticles showed large number of applications in technological and industrial field. This paper analyzed the bioconvection phenomenon in magnetohydrodynamic boundary layer flow of a Powell-Eyring nanoliquid past a stretchable cylinder with Cattaneo-Christov heat flux. In addition, the impacts of chemical reaction and heat generation/absorption parameter are considered. By the use of appropriate transformation, the governing PDEs (nonlinear) have been transformed and formulated into nonlinear ODEs. The resulting nonlinear ODEs subjected to relevant boundary conditions are solved analytically through homotopy analysis method which is programmed in Mathematica software. Graphical and numerical results versus physical quantities like velocity, temperature, concentration and motile microorganism are investigated under the impact of physical parameters. It is noted that velocity profile enhances as the curvature parameter A and Eyring-Powell fluid parameter M increases but a decline manner for large values of buoyancy ratio parameter Nr and bio-convection Rayleigh number Rb. In the presence of Prandtl number Pr, Eyring-Powell fluid parameter M and heat absorption parameter ��, temperature profile decreases. Nano particle concentration profile increases for increasing values of magnetic parameter Ha and thermophoresis parameter Nt. The motile density profile has revealed a decrement pattern for higher values of bio-convection Lewis number Lb and bio-convection peclet number Pe. This study may find uses in bio-nano coolant systems, advance nanomechanical bio-convection energy conversion equipment's, etc.

Comparison of Newton's and Euler's Algorithm in a Compound Pendulum (복합진자 모형의 뉴튼.오일러 알고리즘 비교)

  • Hah, Chong-Ku
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2006
  • The Primary type of swinging motion in human movement is that which is characteristic of a pendulum. The two types of pendulums are identified as simple and compound. A simple pendulum consist of a small body suspended by a relatively long cord. Its total mass is contained within the bob. The cord is not considered to have mass. A compound pendulum, on the other hand, is any pendulum such as the human body swinging by hands from a horizontal bar. Therefore a compound pendulum depicts important motions that are harmonic, periodic, and oscillatory. In this paper one discusses and compares two algorithms of Newton's method(F = m a) and Euler's method (M = $I{\times}{\alpha}$) in compound pendulum. Through exercise model such as human body with weight(m = 50 kg), body length(L = 1.5m), and center of gravity ($L_c$ = 0.4119L) from proximal end swinging by hands from a horizontal bar, one finds kinematic variables(angle displacement / velocity / acceleration), and simulates kinematic variables by changing body lengths and body mass. BSP by Clauser et al.(1969) & Chandler et al.(1975) is used to find moment of inertia of the compound pendulum. The radius of gyration about center of gravity (CoG) is $k_c\;=\;K_c{\times}L$ (단, k= radius of gyration, K= radius of gyration /segment length), and then moment of inertia about center of gravity(CoG) becomes $I_c\;=\;m\;k_c^2$. Finally, moment of inertia about Z-axis by parallel theorem becomes $I_o\;=\;I_c\;+\;m\;k^2$. The two-order ordinary differential equations of models are solved by ND function of numeric analysis method in Mathematica5.1. The results are as follows; First, The complexity of Newton's method is much more complex than that of Euler's method Second, one could be find kinematic variables according to changing body lengths(L = 1.3 / 1.7 m) and periods are increased by body length increment(L = 1.3 / 1.5 / 1.7 m). Third, one could be find that periods are not changing by means of changing mass(m = 50 / 55 / 60 kg). Conclusively, one is intended to meditate the possibility of applying a compound pendulum to sports(balling, golf, gymnastics and so on) necessary swinging motions. Further improvements to the study could be to apply Euler's method to real motions and one would be able to develop the simulator.

Comparative analysis on darcy-forchheimer flow of 3-D MHD hybrid nanofluid (MoS2-Fe3O4/H2O) incorporating melting heat and mass transfer over a rotating disk with dufour and soret effects

  • A.M. Abd-Alla;Esraa N. Thabet;S.M.M.El-Kabeir;H. A. Hosham;Shimaa E. Waheed
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.325-340
    • /
    • 2024
  • There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.