• Title/Summary/Keyword: Mathematic

Search Result 297, Processing Time 0.026 seconds

MATHEMATICS AND SOCIETY IN KORYO AND CHOSUN (고려.조선시대의 수학과 사회)

  • 정지호
    • Journal for History of Mathematics
    • /
    • v.2 no.1
    • /
    • pp.91-105
    • /
    • 1985
  • Though the tradition of Korean mathematics since the ancient time up to the "Enlightenment Period" in the late 19th century had been under the influence of the Chinese mathematics, it strove to develop its own independent of Chinese. However, the fact that it couldn't succeed to form the independent Korean mathematics in spite of many chances under the reign of Kings Sejong, Youngjo, and Joungjo was mainly due to the use of Chinese characters by Koreans. Han-gul (Korean characters) invented by King Sejong had not been used widely as it was called and despised Un-mun and Koreans still used Chinese characters as the only "true letters" (Jin-suh). The correlation between characters and culture was such that , if Koreans used Han-gul as their official letters, we may have different picture of Korean mathematics. It is quite interesting to note that the mathematics in the "Enlightenment Period" changed rather smoothly into the Western mathematics at the time when Han-gul was used officially with Chinese characters. In Koryo, the mathematics existed only as a part of the Confucian refinement, not as the object of sincere study. The mathematics in Koryo inherited that of the Unified Shilla without any remarkable development of its own, and the mathematicians were the Inner Officials isolated from the outside world who maintained their positions as specialists amid the turbulence of political changes. They formed a kind of Guild, their posts becoming patrimony. The mathematics in Koryo is significant in that they paved the way for that of Chosun through a few books of mathematics such as "Sanhak-Kyemong, "Yanghwi - Sanpup" and "Sangmyung-Sanpup." King Sejong was quite phenomenal in his policy of promotion of mathematics. King himself was deeply interested in the study, createing an atmosphere in which all the high ranking officials and scholars highly valued mathematics. The sudden development of mathematic culture was mainly due to the personality and capacity of King who took any one with the mathematic talent onto government service regardless of his birth and against the strong opposition of the conservative officials. However, King's view of mathematics never resulted in the true development of mathematics per se and he used it only as an official technique in the tradition way. Korean mathematics in King Sejong's reign was based upon both the natural philosophy in China and the unique geo-political reality of Korean peninsula. The reason why the mathematic culture failed to develop continually against those social background was that the mathematicians were not allowed to play the vital role in that culture, they being only the instrument for the personality or politics of the King. While the learned scholar class sometimes played the important role for the development of the mathematic culture, they often as not became an adamant barrier to it. As the society in Chosun needed the function of mathematics acutely, the mathematicians formed the settled class called Jung-in (Middle-Man). Jung-in was a unique class in Chosun and we can't find its equivalent in China of Japan. These Jung-in mathematician officials lacked tendency to publish their study, since their society was strictly exclusive and their knowledge was very limited. Though they were relatively low class, these mathematicians played very important role in Chosun society. In "Sil-Hak (the Practical Learning) period" which began in the late 16th century, especially in the reigns of King Youngjo and Jungjo, which was called the Renaissance of Chosun, the ambitious policy for the development of science and technology called for the rapid increase of the number of such technocrats as mathematicians inevitably became quite ambitious and proud. They tried to explore deeply into mathematics per se beyond the narrow limit of knowledge required for their office. Thus, in this period the mathematics developed rapidly, undergoing very important changes. The characteristic features of the mathematics in this period were: Jung-in mathematicians' active study an publication, the mathematic studies by the renowned scholars of Sil-Hak, joint works by these two classes, their approach to the Western mathematics and their effort to develop Korean mathematics. Toward the "Enlightenment Period" in the late 19th century, the Western mathematics experienced great difficulty to take its roots in the Peninsula which had been under the strong influence of Confucian ideology and traditional Korean mathematic system. However, with King Kojong's ordinance in 1895, the traditonal Korean mathematics influenced by Chinese disappeared from the history of Korean mathematics, as the school system was changed into the Western style and the Western matehmatics was adopted as the only mathematics to be taught at the schools of various levels. Thus the "Enlightenment Period" is the period in which Korean mathematics sifted from Chinese into European.od" is the period in which Korean mathematics sifted from Chinese into European.pean.

  • PDF

A Case Study about Influence of Primary Mathematic Concepts on the Composition of Mathematic Concepts in 3rd grade Prodigies of Elementary Schools - Focusing on Addition and Multiplication of Fractions - (수학의 1차적 개념이 초등학교 3학년 영재아의 수학적 개념구성과정에 미치는 영향에 대한 사례연구 - 분수의 덧셈과 곱셈을 중심으로 -)

  • Kim, Hwa Soo
    • Journal of Gifted/Talented Education
    • /
    • v.24 no.1
    • /
    • pp.17-43
    • /
    • 2014
  • On the subjects of elementary 3rd grade three child prodigies who had learned the four fundamental arithmetic operations and primary concepts of fraction, this study conducted a qualitative case research to examine how they composed schema of addition and multiplication of fractions and transformed schema through recognition of precise concepts and linking of concepts with addition and multiplication of fractions as the contents. That is to say, this study investigates what schema and transformed schema child prodigies form through composition of primary mathematic concepts to succeed in relational understanding of addition and multiplication of fractions, how they use their own formed schema and transformed schema for themselves to approach solutions to problems with addition and multiplication of fractions, and how the subjects' concept formation and schema in their problem solving competence proceed to carry out transformations. As a result, we can tell that precise recognition of primary concepts, schema, and transformed schema work as crucial factors when addition of fractions is associated with multiplication of fractions, and then that the schema and transformed schema that result from the connection among primary mathematic concepts and the precise recognition of the primary concepts play more important roles than any other factors in creative problem solving with respect to addition and multiplication of fractions.

How Teachers Use Mathematics Curriculum Materials in Planning and Implementing Mathematics Lessons (교사의 수업 계획 및 실제 수업에서의 수학 교과서와 교사용지도서 활용 연구)

  • Kim, Goo-Yeon
    • School Mathematics
    • /
    • v.13 no.3
    • /
    • pp.485-500
    • /
    • 2011
  • The purpose of this study is to investigate how elementary mathematics teachers use and implement a reform-oriented mathematics curriculum material, Everyday Mathematics, and to examine what features the curriculum material has. Eight elementary mathematics teachers in the United States participated in the study. Data sources consist of teacher classroom observation write-ups, interviews, and the curriculum material. The results from the analysis of the curriculum material suggest that 80 percent of the tasks are at the high-level in terms of cognitive demand and 26 percent of tasks are identified as transparent. The results also show that the teachers appeared to adapt the curriculum material and partially take suggestions or activities out of the curriculum material in enacting them in their mathematics classrooms. The analysis of enacted tasks suggests that the levels of cognitive demand were shifted from high-level to low-level; 27 percent of the high-level tasks in the curriculum material were maintained at the high-level as enacted in the mathematics classrooms. The level of cognitive demand shifted in many cases; shifts from high-level to low-level occurred. This contributes to the curriculum material not being transparent to teachers.

  • PDF

THE SIMULTANEOUS APPROXIMATION ORDER BY NEURAL NETWORKS WITH A SQUASHING FUNCTION

  • Hahm, Nahm-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.701-712
    • /
    • 2009
  • In this paper, we study the simultaneous approximation to functions in $C^m$[0, 1] by neural networks with a squashing function and the complexity related to the simultaneous approximation using a Bernstein polynomial and the modulus of continuity. Our proofs are constructive.

MAPPINGS ON FUZZY PROXIMITY AND FUZZY UNIFORM SPACES

  • Kim, Yong Chan
    • Korean Journal of Mathematics
    • /
    • v.4 no.2
    • /
    • pp.149-161
    • /
    • 1996
  • We define the fuzzy uniformly continuous map and investigate some properties of fuzzy uniformly continuous maps. We will prove the existences of initial fuzzy uniform structures induced by some functions. From this fact, we construct the product of two fuzzy uniform spaces.

  • PDF

SOME HILBERT FUNCTIONS FROM k-CONFIGURATIONS ONLY

  • SHIN DONG-SOO
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.685-689
    • /
    • 2005
  • We find some Hilbert functions of codimension 4, which are obtained from only k-configurations in $\mathbb{P}^{3}$ and support the $3^{rd}$ linear syzygy.

STUDY ON THE TENSOR PRODUCT SPECTRUM

  • Lee, Dong Hark
    • Korean Journal of Mathematics
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • We will introduce tensor product spectrums on the tensor product spaces. And we will show that ${\sigma}[P(T_1,T_2,{\ldots},T_n)]=P[({\sigma}(T_1),{\sigma}(T_2){\ldots},{\sigma}(T_n)]={\sigma}(T_1,T_2{\ldots},T_n)$.

  • PDF