• Title/Summary/Keyword: Maternal mRNA

Search Result 65, Processing Time 0.021 seconds

Effect of maternal gene expression on porcine oocytes in vitro maturation (돼지 미성숙 난자 모계 유전자 발현이 체외성숙에 미치는 영향)

  • Lee, Jae-Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3532-3536
    • /
    • 2012
  • Understanding of the maternal transcriptome increased to elucidate the underlying molecular mechanism of normal oocyte maturation, which depends on a precise sequence of changes in maternal genes expression. Previous reports that the translational potential of a maternal mRNA is generally determined by the length of the poly(A) tail, and deadenylation is usually the first sign of mRNA degradation. However, in vitro cultured system has the underlying molecular mechanisms remain unclear. We determined whether the role of molecular basis, four important maternal genes, C-mos, cyclin-B1 (regulatory subunit of MPF), BMP15 and GDF9, were selected for detection of their precise mRNA expression patterns by real-time PCR and for determination of their polyadenylation status by poly(A) tail PCR during oocyte maturation. In the present study. the abnormal expression of maternal mRNAs prior to zygotic genome activation, which results in suppression of the corresponding protein level, may be responsible for, at least in part, a profound defect in further embryonic development. Reasonable expression of maternal gene is crucial for proper oocyte maturation and further embryonic development.

Differential Display of mRNA in the Preimplantation Mouse Embryos by Reverse Transcriptase Polymerase Chain Reaction (역전사 연쇄중합반응에 의한 착상전 생쥐난자에서의 상이한 mRNA의 발현조사에 의한 새로운 유전자의 크로닝법)

  • 김진회;박흠대;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.3
    • /
    • pp.199-206
    • /
    • 1994
  • We present here a new PCR-based cloning technique that allows the different PCR products during mouse embryogenesis. Recently, mRNA differential display described by Liang & Pardee (Science 257, 1992) and re-confirmed by Zimermann & Schultz (PNAS 91,1994). This method will detect the appropriate changes in the temporal patterns of expression or in the transition from maternal control to zygotic control as well as the functional difference of embryo with polyspermy or monospermy, the difference of expression between successfully hatched blastocyst and blastocyst failed to hatching, response to agents, and cell cycle regulation. By this methods, we have cloned an eDNA, which showed mouse 2 cell specific expression. Genomic DNA digested with EcoRI showed approximately 15 kb and then showed higher expression in fetal liver rather than adult liver. Furthermore, this gene is likely to have 2 mRNA by alternative splicing.

  • PDF

Correlations of Litter Size and Maternal Serum Progesterone Concentration during Pregnancy with Mammary Gland Growth and Development Indices at Parturition in Javanese Thin-Tail Sheep

  • Manalu, W.;Sumaryadi, M.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.3
    • /
    • pp.300-306
    • /
    • 1998
  • An experiment was conducted to investigate correlations of litter size and average serum progesterone concentrations during pregnancy with mammary gland growth and development at parturition. Twenty ewes (5, 9, 4, and 2 ewes carrying 0, 1, 2, and 3 lambs, respectively) were used to measure weekly serum progesterone concentration during pregnancy. At parturition, the experimental ewes were slaughtered for determination of mammary gland growth and development at parturition (mammary dry fat-free tissue [DFFT], DNA, RNA, collagen, protein, and glycogen). Correlation of mammary DFFT with litter size and averages serum progesterone concentrations were 0.75 and 0.72, respectively. Litter size or maternal serum progesterone concentrations did not correlate with the mammary DNA concentration. However, litter size or maternal serum progesterone concentrations positively correlated (p < 0.01) with the mammary RNA and protein concentrations, but negatively correlated with the mammary collagen (p < 0.01) and. glycogen (p < 0.05) concentrations. Litter size or maternal serum progesterone positively correlated (p < 0.01) with the total mammary DNA, RNA, collagen, protein and glycogen contents. These results implied that the increased concentrations of progesterone with the increased litter size during pregnancy improved mammary gland growth and development at parturition.

Maternal betaine supplementation ameliorates fatty liver disease in offspring mice by inhibiting hepatic NLRP3 inflammasome activation

  • Lun Li;Liuqiao Sun;Xiaoping Liang;Qian Ou;Xuying Tan;Fangyuan Li;Zhiwei Lai;Chenghe Ding;Hangjun Chen;Xinxue Yu;Qiongmei Wu;Jun Wei;Feng Wu;Lijun Wang
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1084-1098
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Previous research has shown maternal betaine supplementation alleviates fetal-derived hepatic steatosis. Therefore, this study examined the anti-inflammatory effect of maternal betaine intake in offspring mice and its mechanism. MATERIALS/METHODS: Female C57BL/6J mice and their offspring were randomly divided into 3 groups according to the treatment received during gestation and lactation: control diet (CD), fatty liver disease (FLD), and fatty liver disease + 1% betaine (FLD-BET). The FLD group was given a high-fat diet and streptozotocin (HFD + STZ), and the FLD-BET group was treated with HFD + STZ + 1% betaine. After weaning, the offspring mice were given a normal diet for 5 weeks and then dissected to measure the relevant indexes. RESULTS: Compared to the CD group, the offspring mice in the FLD group revealed obvious hepatic steatosis and increased serum levels of alanine aminotransferase, interleukin (IL)-6, and tumor necrosis factor (TNF)-α; maternal betaine supplementation reversed these changes. The hepatic mRNA expression levels of IL-6, IL-18, and Caspase-1 were significantly higher in the FLD group than in the CD group. Maternal betaine supplementation reduced the expression of IL-1β, IL-6, IL-18, and apoptosis-associated speck-like protein containing C-terminal caspase recruitment domain (ASC). Maternal betaine supplementation also reversed the increasing protein expressions of nitric oxide dioxygenase-like receptor family pyrin domain containing 3 (NLRP3), ASC, Caspase-1, IL-1β, and IL-18 in offspring mice exposed to HFD + STZ. Maternal betaine supplementation decreased the homocysteine (Hcy) and s-adenosine homocysteine (SAH) levels significantly in the livers. Furthermore, the hepatic Hcy concentrations showed significant inverse relationships with the mRNA expression of TNF-α, NLRP3, ASC, and IL-18. The hepatic SAH concentration was inversely associated with the IL-1β mRNA expression. CONCLUSIONS: The lipotropic and anti-inflammatory effect of maternal betaine supplementation may be associated with the inhibition of NLRP3 inflammasome in the livers of the offspring mice.

Maternal Low-protein Diet Alters Ovarian Expression of Folliculogenic and Steroidogenic Genes and Their Regulatory MicroRNAs in Neonatal Piglets

  • Sui, Shiyan;Jia, Yimin;He, Bin;Li, Runsheng;Li, Xian;Cai, Demin;Song, Haogang;Zhang, Rongkui;Zhao, Ruqian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.12
    • /
    • pp.1695-1704
    • /
    • 2014
  • Maternal malnutrition during pregnancy may give rise to female offspring with disrupted ovary functions in adult age. Neonatal ovary development predisposes adult ovary function, yet the effect of maternal nutrition on the neonatal ovary has not been described. Therefore, here we show the impact of maternal protein restriction on the expression of folliculogenic and steroidogenic genes, their regulatory microRNAs and promoter DNA methylation in the ovary of neonatal piglets. Sows were fed either standard-protein (SP, 15% crude protein) or low-protein (LP, 7.5% crude protein) diets throughout gestation. Female piglets born to LP sows showed significantly decreased ovary weight relative to body weight (p<0.05) at birth, which was accompanied with an increased serum estradiol level (p<0.05). The LP piglets demonstrated higher ratio of bcl-2 associated X protein/B cell lymphoma/leukemia-2 mRNA (p<0.01), which was associated with up-regulated mRNA expression of bone morphogenic protein 4 (BMP4) (p<0.05) and proliferating cell nuclear antigen (PCNA) (p<0.05). The steroidogenic gene, cytochrome P450 aromatase (CYP19A1) was significantly down-regulated (p<0.05) in LP piglets. The alterations in ovarian gene expression were associated with a significant down-regulation of follicle-stimulating hormone receptor mRNA expression (p<0.05) in LP piglets. Moreover, three microRNAs, including miR-423-5p targeting both CYP19A1 and PCNA, miR-378 targeting CYP19A1 and miR-210 targeting BMP4, were significantly down-regulated (p<0.05) in the ovary of LP piglets. These results suggest that microRNAs are involved in mediating the effect of maternal protein restriction on ovarian function through regulating the expression of folliculogenic and steroidogenic genes in newborn piglets.

Effects of maternal undernutrition during late pregnancy on the regulatory factors involved in growth and development in ovine fetal perirenal brown adipose tissue

  • Yang, Huan;Ma, Chi;Zi, Yang;Zhang, Min;Liu, Yingchun;Wu, Kaifeng;Gao, Feng
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.1010-1020
    • /
    • 2022
  • Objective: The experiment was conducted to evaluate the effects of maternal undernutrition during late pregnancy on the expressions of genes involved in growth and development in ovine fetal perirenal brown adipose tissue (BAT). Methods: Eighteen ewes with singleton fetuses were allocated to three groups at day 90 of pregnancy: restricted group 1 (RG1, 0.33 MJ metabolisable energy [ME]/kg body weight [BW]0.75/d, n = 6), restricted group 2 (RG2, 0.18 MJ ME/kg BW0.75/d, n = 6), and a control group (CG, ad libitum, 0.67 MJ ME/kg BW0.75/d, n = 6). The fetuses were removed at day 140 of pregnancy. All data were analyzed by using the analysis of variance procedure. Results: The perirenal fat weight (p = 0.0077) and perirenal fat growth rate (p = 0.0074) were reduced in RG2 compared to CG. In fetal perirenal BAT, the protein level of uncoupling protein 1 (UCP1) (p = 0.0001) was lower in RG1 and RG2 compared with CG and UCP1 mRNA expression (p = 0.0265) was decreased in RG2. The protein level of myogenic factor 5 (Myf5) was also decreased in RG2 (p = 0.0001). In addition, mRNA expressions of CyclinA (p = 0.0109), CyclinB (p = 0.0019), CyclinD (p = 0.0015), cyclin-dependent kinase 1 (CDK1) (p = 0.0001), E2F transcription factor 1 (E2F1) (p = 0.0323), E2F4 (p = 0.0101), and E2F5 (p = 0.0018) were lower in RG1 and RG2. There were decreased protein expression of peroxisome proliferator-activated receptor-γ (PPARγ) (p = 0.0043) and mRNA expression of CCAAT/enhancer-binding protein-α (C/EBPα) (p = 0.0307) in RG2 and decreased PPARγ mRNA expression (p = 0.0008) and C/EBPα protein expression (p = 0.0015) in both RG2 and RG1. Furthermore, mRNA expression of bone morphogenetic protein 4 (BMP4) (p = 0.0083) and BMP7 (p = 0.0330) decreased in RG2 and peroxisome proliferator-activated receptor co-activator-1α (PGC-1α) reduced in RG2 and RG1. Conclusion: Our observations support that repression of regulatory factors promoting differentiation and development results in the inhibition of BAT maturation in fetal perirenal fat during late pregnancy with maternal undernutrition.

Transcriptional Onset of Lysozyme Genes during Early Development in Olive Flounder (Paralichthys olivaceus)

  • Lee, Jang-Wook;Lee, Jeong-Ho;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Kim, Kyung-Kil
    • Development and Reproduction
    • /
    • v.18 no.4
    • /
    • pp.267-274
    • /
    • 2014
  • The immune system in teleost fish is not completely developed during embryonic and larval stages, therefore effective innate mechanisms is very important for survival in such an environment. However, the knowledge of the development of immune system assumed to be restricted. In many species, lysozymes have been considered as important genes of the first line immune defense. The early detection of lysozyme mRNA in previous reports, led to the investigation of its presence in oocytes. As a result, c-type lysozyme mRNA transcripts were detected in unfertilized oocytes indicating maternal transfer. Therefore, we investigated the expression patterns of lysozymes in flounder, including the matured oocyte. In our results, c-type lysozyme mRNA was first detected in unfertilized oocyte stage, observed the significantly decreased until hatching stage, and was significantly increased after hatching stage. On the other hand, g-type lysozyme mRNA transcripts were first detected at late neurula stage, and the mRNA level was significantly increased after 20 dph. It may be suggest that maternally supplied mRNAs are selectively degraded prior to the activation of embryonic transcription. This study will be help in understanding the maturation and onset of humoral immunity during development of olive flounder immune system.