• 제목/요약/키워드: Materials property

검색결과 4,161건 처리시간 0.033초

Synthesis of Zirconium Oxide Nanoballs Using Colloid-Imprinted Carbon and Their Electrical Properties

  • Kim, Chy Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권2호
    • /
    • pp.86-89
    • /
    • 2015
  • Uniform ZrO2 nanoballs were synthesized at 700℃ using the inverse replication method through a colloid-imprinted carbon (CIC) template. The structural, dielectric, and conducting properties of the ZrO2 nanoballs were investigated and compared with those of ZrO2 film prepared by sol-gel method and powdered ZrO2 chemical. Both the monoclinic and cubic phases were found in the ZrO2 balls and film but the ZrO2 chemical showed a monoclinic phase, where the cubic structure is known to be formed at above 2,300℃. ZrO2 nanoballs showed the lower dielectric property of k = 21.2 at 1 MHz because the 8-coordinated cubic phase in the ZrO2 nanoball produced lower polarization than the polarization of the 7-coordinated monoclinic ZrO2 chemical (k = 23.6). The dielectric stability was maintained in each ZrO2 ball, film, and chemical under the applied forward and reverse voltage range (−5 to +5 V) at 1 MHz. The ionic conductivities were 7.86 × 10−8/Ω·cm for ZrO2 nanoballs, 3.29 × 10−8/Ω·cm for ZrO2 chemical, and 6.70 × 10−5/Ω·cm for the thickness of 1,053 nm ZrO2 film at room temperature with the electronic contribution being less than 0.006%.

Resistance of Cementitious Binders to Chloride Induced Corrosion of Embedded Steel by Electrochemical and Microstructural Studies

  • Song, Ha-Won;Ann, Ki-Yong;Kim, Tae-Sang
    • Corrosion Science and Technology
    • /
    • 제8권2호
    • /
    • pp.74-80
    • /
    • 2009
  • The high alkaline property in the concrete pore solution protects the embedded steel in concrete from corrosion due to aggressive ions attack. However, a continuous supply of those ions, in particular, chlorides altogether with a pH fall in electrochemical reaction on the steel surface eventually depassivate the steel to corrode. To mitigate chloride-induced corrosion in concrete structures, finely grained mineral admixtures, for example, pulverized fuel ash (PFA), ground granulated blast furnace slag (GGBS) and silica fume (SF) have been often advised to replace ordinary Portland cement (OPC) partially as binder. A consistent assessment of those partial replacements has been rarely performed with respect to the resistance of each binder to corrosion, although the studies for each binder were extensively looked into in a way of measuring the corrosion rate, influence of microstructure or chemistry of chlorides ions with cement hydrations. The paper studies the behavior of steel corrosion, chloride transport, pore structure and buffering capacity of those cementitious binders. The corrosion rate of steel in mortars of OPC, 30% PFA, 60% GGBS and 10% SF respectively, with chloride in cast ranging from 0.0 to 3.0% by weight of binder was measured at 7, 28 and 150 days to determine the chloride threshold level and the rate of corrosion propagation, using the anodic polarization technique. Mercury intrusion porosimetry was also applied to cement pastes of each binder at 7 and 28 days to ensure the development of pore structure. Finally, the release rate of bound chlorides (i.e. buffering capacity) was measured at 150 days. The chloride threshold level was determined assuming that the corrosion rate is beyond 1-2 mA/$m^3$ at corrosion and the order of the level was OPC > 10% SF > 60% GGBS > 30% PFA. Mercury intrusion porosimetry showed that 10% SF paste produced the most dense pore structure, followed by 60% GGBS, 30% PFA and OPC pastes, respectively. It was found that OPC itself is beneficial in resisting to corrosion initiation, but use of pozzolanic materials as binders shows more resistance to chloride transport into concrete, thus delay the onset of corrosion.

Effects of W Contents in Co Matrix of the Thermal Sprayed WC-Co on the Corrosion Behavior in Molten Zinc

  • Seong, Byeong-Geun;Hwang, Sun-Young;Kim, Kyoo-Young;Lee, Kee-Ahn
    • Corrosion Science and Technology
    • /
    • 제6권4호
    • /
    • pp.147-153
    • /
    • 2007
  • This study sought to investigate the reaction of Co-binder containing tungsten with molten zinc. Four kinds of Co-W alloys (pure, 10%W, 20%W, 30%W) were prepared using the powder metallurgy method. The specimens were immersion-tested in molten pure zinc baths at $460^{\circ}C$. To evaluate the corrosion property in molten zinc, the weight loss of the specimen was measured after the immersion tests at different immersion times (10~300 min.). Co-10%W alloys, compared with pure cobalt, showed no effect of tungsten addition on the reaction rate in molten zinc. The relationship between the weight loss and the square root of immersion period represents a straight line in both pure cobalt and Co-10%W alloy. The Co-Zn reaction layer in Co- 1O%W alloy consists of $\gamma2$, $\gamma1$, $\gamma$ and ($\beta1$ phases. The rate of weight loss significantly increases and the weight loss behavior is not well accord with the linear relationship as the tungsten content in the Co-W alloy increases. The $\beta1$ layer was not formed on the Co-20%W alloy and neither was a stable Co-Zn intermetallic compound layer found on the Co-30%W alloy. The main cause of increase in reaction rate with increasing tungsten content is related with the instability of the Co-Zn reaction phases as seen on micro-structural analysis.

용해조건 및 합금원소 첨가에 따른 고규소 내산주철의 기계적 성질 및 부식속도의 변화 (Variations of Mechanical Properties and Corrosion Rate with Melting Conditions and Alloying Elements in High Silicon Cast Irons)

  • 김정철;한동운;백진현;백승한;문병문;신제식;이영국
    • 한국주조공학회지
    • /
    • 제24권4호
    • /
    • pp.209-216
    • /
    • 2004
  • High silicon cast irons(HSCI) with the high acid resistance have been used for the prevention of acid corrosion occurring in various structures under acid conditions. However, the HSCI is only known as one of materials which have high acid resistance, but few work has dealt with this material in domestic. Therefore, in this study, the acid resistance of various cast irons with alloying elements and melting conditions have been examined, and studied the influences of the matrix structures, mechanical properties and morphologies of graphite. The results obtained in this study are as follows : In case of melting temperature, the mechanical properties of specimen manufactured with high temperature of $1650^{\circ}C$ showed higher value because the inclusion and impurity were removed. In case of pouring temperature, the mechanical properties of specimen fabricated below $1350^{\circ}C$ of pouring temperature showed higher value because the amount of gas absorption from atmosphere decreased during the solidification time. The corrosion rate decreased with increase in Si content. On the other hand, Mn addition appeared an opposite trend with Si.

멀티노즐/보조전극-Electrohydrodynamic 공정을 통한 PCL 나노파이버 제작 (Electrohydrodynamic Process Supplemented by Multiple-Nozzle and Auxiliary Electrodes for Fabricating PCL Nanofibers)

  • 윤현;김근형;김완두
    • 폴리머
    • /
    • 제32권4호
    • /
    • pp.334-339
    • /
    • 2008
  • 최근 전기방사공정은 다양한 고분자의 마이크로 및 나노 크기 섬유를 만드는 기술로서 널리 사용되어 왔다. 일반적으로 많은 연구자들에 의하면, 다중노즐 전기방사공정은 노즐들 사이의 전기장 간섭효과 때문에 짧은 시간에 높은 생산성을 갖기 어려웠다. 이러한 문제를 극복하기 위하여 본 연구에서는 다양한 보조전극을 이용한 다중노즐 전기방사공정을 개발하였다. 본 연구에서 사용된 물질은 바이오소재로서 많이 사용되고 있는 poly($\varepsilon$-carprolactone)(PCL)을 사용하였다. 다중노즐 시스템의 영향을 확인하기 위하여 전기방사의 안정성, 다중노즐을 사용하였을 때의 생산성 및 제조된 나노섬유의 크기와 안정성을 보조전극을 사용하였을 때와 사용하지 않았을 때를 비교하였다. 결과적으로 보조전극을 사용한 노즐의 안정성이 사용하지 않은 노즐에 비해 전기방사 안정성과 우수한 생산성을 보였다.

Sn-3Ag-0.5Cu계 솔더를 이용한 자동차 전장 부품 접합부의 열충격 특성에 관한 연구 (A Study of Thermal Shock Characteristics on the Joints of Automotive Application Component using Sn-3Ag-0.5Cu Solder)

  • 전유재;손선익;김도석;신영의
    • 한국전기전자재료학회논문지
    • /
    • 제23권8호
    • /
    • pp.611-616
    • /
    • 2010
  • This study investigated the characteristics of fracture behavior and mode on solder joints before and after thermal shock test for automotive application component using Sn-3.0Ag-0.5Cu solder, which has a outstanding property as lead-free solder. The shear strength was decreased with thermal cycle number, after 432 cycles of thermal shock test. In addition, fracture mode was verified to ductile, brittle fracture and base materials fracture such as different kind fractured mode using SEM and EDS. Before the thermal shock, the fractured mode was found to typical ductile fracture in solder layer. After thermal shock test, especially, Ag was found on fractured portion as roughest surface. Moreover, it occurred delamination between a PCB and a Cu land. Before thermal shock test, most of fractured mode in solder layer has dimples by ductile fracture. However, after thermal shock test, the fractured mode became a combination of ductile and brittle fracture, and it also could find that the fracture behavior varied including delamination between substrate and Cu land.

근대 건축물에 사용된 서양식 목조 지붕 트러스의 구조요인 및 기타 영향요인에 관한 연구 - 공공기관이 관리하는 문화재 중 근대건축물 기록을 중심으로 - (A Study on the Structural and Other Influential Characteristics of Western Timber Roof Truss in Modern Buildings - Focusing the Record of Modern Buildings among the Cultural Assets maintained by Public Institution -)

  • 이윤희;유혜란;권기혁
    • 건축역사연구
    • /
    • 제20권4호
    • /
    • pp.95-114
    • /
    • 2011
  • Western style timber roof trusses used as typical roof structures of buildings during a modern period have been developed with the interactions with their facade and functionality. The shapes of trusses and member sizes have been diversely changed by the purposes of architects, historical circumstances, and structural characteristics. For this reason, the change in the shapes of western style timber trusses along the times is one of important technology assets demonstrating the development of their structures during the modern period. Therefore, the purpose of this paper is to find out their structural characteristics throughout parametric analysis of which parameters were determined from the collected and classified documents on western style timber roof structure built in the modern period carefully obtained from public institutions. Results of the parametric analysis are as follows. The number of king-post trusses and modified king-post trusses built between 1920 and 1937 reaches almost half of the total number of truss types investigated. The mean values of their spans, distances, tributary areas, and height are respectively, 10.5m, 2.4m, $24.37m^2$and 3.24m. The cross-section areas of trusses tend to reduce since the city construction law was enacted in 1920. Also, this study found that western architects usually used larger structural members than eastern architects and usages and finishing materials of roof trusses are not always considered as one of the important design parameters.

동적자세와 피부분절을 이용한 기능성 밀착의복 제작 프로세스 (Engineering design process of tight-fit sportswear using 3D information of dermatomes and skin deformation in dynamic posture)

  • 김소영;홍경희
    • 한국생활과학회지
    • /
    • 제21권3호
    • /
    • pp.551-565
    • /
    • 2012
  • The primary goal of this study was to provide a systematic methodology of utilizing 3D technology for tight-fit performance sportswear using information of skin deformation in various posture. Technical tools used in this study are Cyberware whole body scanner, RapidForm2004, 2C-AN 3D pattern development program, and YukaCAD. Analysis of the 3D skin deformation while knee joint was bent from $0^{\circ}$ to $60^{\circ}$ revealed that the length of dermatomes L4 was remained consistent during knee bending. Therefore, L4 was chosen as a major cutting line. To develop a highly ergonomic pattern, replicas of static and dynamic postures were developed and integrated using two methods, one is morphing method (Sqirlz Morph), and the other is AutoCAD. Experimental tight-fit garments called 'Derm-Mov Pattern' was designed using dematomes L4, L2, and inner line under knee and compared with four other patterns. As results, AutoCAD was appropriate as a integrating method of various postures. In wear test, 'Derm-Mov Pattern' was rated high (p < .001), in terms of pressure comfort especially around front crotch area. However, wear sensation was not signipicantly different in other area due to highly extensible property of materials. Pressure distribution was relatively even in these experimental garments.

Effect of Hole-Transporting Layer and Solvent in Solution Processed Highly-Efficient Small Molecule Organic Light-Emitting Diodes

  • Jo, Min-Jun;Hwang, Won-Tae;Chae, Hee-Yeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.250-250
    • /
    • 2012
  • Organic light-emitting diodes (OLED) and polymer light emitting diodes (PLED) have been regarded as the candidate for the next generation light source and flat panel display. Currently, the most common OLED industrial fabrication technology used in producing real products utilizes a fine shadow mask during the thermal evaporation of small molecule materials. However, due to high potential including low cost, easy process and scalability, various researches about solution process are progressed. Since polymer has some disadvantages such as short lifetime and difficulty of purifying, small molecule OLED (SMOLED) can be a good alternative. In this work, we have demonstrated high efficient solution-processed OLED with small molecule. We use CBP (4,4'-N,N'-dicarbazolebiphenyl) as a host doped with green dye (Ir(ppy)3 (fac-tris(2-phenyl pyridine) iridium)). PBD (2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole) and TPD (N,N'diphenyl-N,N'-Bis (3-methylphenyl)-[1,1-biphenyl]-4,4'-diamine) are employed as an electron transport material and a hole transport material. And TPBi (2,2',2''-(1,3,5-phenylene) tris (1-phenyl-1H-benzimidazole)) is used as an hole blocking layer for proper hole and electron balance. With adding evaporated TPBi layer, the current efficiency was very improved. Among various parameters, we observed the property of OLED device by changing the thickness of hole transporting layer and solvent which can dissolve organic material. We could make small molecule OLED device with finding proper conditions.

  • PDF

반응소결된 Si3N4-SiO2-BN 복합체의 기계적 강도 및 유전물성에 관한 연구 (Flexural Strength and Dielectric Properties of in-situ Si3N4-SiO2-BN Composite Ceramics)

  • 이현민;이승준;백승수;김도경
    • 한국세라믹학회지
    • /
    • 제51권5호
    • /
    • pp.386-391
    • /
    • 2014
  • Silicon nitride ($Si_3N_4$) is regarded as one of the most promising materials for high temperature structural applications due to its excellent mechanical properties at both room and elevated temperatures. However, one high-temperature $Si_3N_4$ material intended for use in radomes has a relatively high dielectric constant of 7.9 - 8.2 at 8 - 10 GHz. In order to reduce the dielectric constant of the $Si_3N_4$, an in-situ reaction process was used to fabricate $Si_3N_4-SiO_2$-BN composites. In the present study, an in-situ reaction between $B_2O_3$ and $Si_3N_4$, with or without addition of BN in the starting powder mixture, was used to form the composite. The in-situ reaction process resulted in the uniform distribution of the constituents making up the composite ceramic, and resulted in good flexural strength and dielectric constant. The composite was produced by pressure-less sintering and hot-pressing at $1650^{\circ}C$ in a nitrogen atmosphere. Microstructure, flexural strength, and dielectric properties of the composites were evaluated with respect to their compositions and sintering processes. The highest flexural strength (193 MPa) and lowest dielectric constant (5.4) was obtained for the hot-pressed composites. The strength of these $Si_3N_4-SiO_2$-BN composites decreased with increasing BN content.