• Title/Summary/Keyword: Materials property

Search Result 4,186, Processing Time 0.032 seconds

Racking Property of Light-framed Shear Wall with Hold-down Connector (홀드다운을 적용한 경골목조 벽체의 전단성능)

  • Lee, In-Chan;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.26-36
    • /
    • 2008
  • As the height of the light-framed building increases, the lateral load and overturn-moment are increased and the possibility of the building overturn becomes larger. Because the shear wall resists lateral load in light-framed building, the reinforcement of shear wall is required. In order to reinforce the light-framed shear wall, using lag screw fastener type (B-HD) and using bolt type (S-HD) hold-down connectors were applied for test. And domestic larch lumbers, $38{\times}140mm$ and $89{\times}140mm$, KS 2nd grade, were used for the stud. The North American OSB panels were used for sheathing panel. Static loads, load speed 6 mm/min, were applied on top of the wall. As a result, shear strength of the wall that using hold-down connector was improved sufficiently. And when applying the S-HD type hold-down connector, stud should be reinforced against weakening by drilled hole. As increasing the number of lag screw, the number of bolt and the product allowable strength, the strength of shear wall that using hold-down connector was also increased. When applying hold-down connector to light-framed building using 38 mm stud, it must be reinforced by enlarging the thickness of stud like as 38 mm doubled column.

Selective Transmission Properties of Al-Ti Based Oxide Thin Films (Al-Ti계 산화물 박막의 조성에 따른 선택적 투과 특성)

  • Bang, Ki Su;Jeong, So Un;Lim, Jung Wook;Lee, Seung-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.1
    • /
    • pp.13-19
    • /
    • 2013
  • It is expected that progress in building-integrated photovoltaic (BIPV) systems, improving the functionality and design of buildings, will be accelerated in the coming years. While the dye sensitized solar cell is considered one of the most important technologies in the BIPV field, the transparent silicon based thin film solar cell fabricated by thin film processes has drawn attention as a novel alternative. When the selective transmitting layer is applied to the solar cell, the conversion efficiency is improved due to the re-reflection of infrared light into an absorber layer with the transmission of visible light through the solar cell. In this work, we prepared Al-Ti based oxide thin films using cost-effective sputter deposition and examined their selective transmitting characteristics with various compositions. The transmittance and reflectance of the Al-Ti based oxide thin film changed with the variation of its composition, and the selective transmitting property was observed in the sample with the 25 nm-thick AlTiO layer. It is considered that the realization of transparent solar cells and the improvement of their conversion efficiency can be achieved by introducing the Al-Ti based selective transmitting layer.

Fabrication and Mechanical Property of Fe-20Cu-1C Compacts by SPS process with Different Heating Rate (방전플라즈마소결법 적용 승온속도 변화에 따라 제조된 Fe-20Cu-1C 소결체 제조 및 특성평가)

  • Ryu, Jung-Han;Shin, Soo-Sik;Ryu, Byung-Rok;Kim, Kyung-Sik;Jang, Jun-Ho;Oh, Ik-Hyun;Kim, Kap-Tae;Park, Hyun-Kuk
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.302-307
    • /
    • 2017
  • In this study, Fe-Cu-C alloy is sintered by spark plasma sintering (SPS). The sintering conditions are 60 MPa pressure with heating rates of 30, 60 and $9^{\circ}C/min$ to determine the influence of heating rate on the mechanical and microstructure properties of the sintered alloys. The microstructure and mechanical properties of the sintered Fe-Cu-C alloy is investigated by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The temperature of shrinkage displacement is changed at $450^{\circ}C$ with heating rates 30, 60, and $90^{\circ}C/min$. The temperature of the shrinkage displacement is finished at $650^{\circ}C$ when heating rate $30^{\circ}C/min$, at $700^{\circ}C$ when heating rate $60^{\circ}C/min$ and at $800^{\circ}C$ when heating rate $90^{\circ}C/min$. For the sintered alloy at heating rates of 30, 60, and $90^{\circ}C/min$, the apparent porosity is calculated to be 3.7%, 5.2%, and 7.7%, respectively. The hardness of the sintered alloys is investigated using Rockwell hardness measurements. The objective of this study is to investigate the densification behavior, porosity, and mechanical properties of the sintered Fe-Cu-C alloys depending on the heating rate.

Fabrication of Environmental-friendly Materials Using Atomic Layer Deposition (원자층 증착을 이용한 친환경 소재의 제조)

  • Kim, Young Dok
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • In this article, I will introduce recent developments of environmental-friendly materials fabricated using atomic layer deposition (ALD). Advantages of ALD include fine control of the thin film thickness and formation of a homogeneous thin fim on complex-structured three-dimensional substrates. Such advantages of ALD can be exploited for fabricating environmental-friendly materials. Porous membranes such as anodic aluminum oxide (AAO) can be used as a substrate for $TiO_2$ coating with a thickness of about 10 nm, and the $TiO_2$-coated AAO can be used as filter of volatile organic compound such as toluene. The unique structural property of AAO in combination with a high adsorption capacity of amorphous $TiO_2$ can be exploited in this case. $TiO_2$ can be also deposited on nanodiamonds and Ni powder, which can be used as photocatalyst for degradation of toluene, and $CO_2$ reforming of methane catalyst, respectively. One can produce structures, in which the substrates are only partially covered by $TiO_2$ domains, and these structures turns out to be catalytically more active than bare substrates, or complete core-shell structures. We show that the ALD can be widely used not only in the semiconductor industry, but also environmental science.

CO Sensing Properties in Layer structure of SnO2-ZnO System prepared by Thick film Process (SnO2-ZnO계 후막센서 구조에 따른 CO 감지 특성)

  • Park, Bo-Seok;Hong, Kwang-Joon;Kim, Ho-Gi;Park, Jin-Seoung
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.155-162
    • /
    • 2002
  • The sensing properties of carbon monooxide were investigated as a function of mixing ratio and the lamination structure of 3mol% ZnO-doped $SnO_2$ and 3mol% $SnO_2$-doped ZnO. The lamination structures were fabricared monolayer, double layer, and hetero layer of $SnO_2$, Zno, and theirs mixture composition using thick film process. There was no second phase by the reaction of $SnO_2$ and ZnO. The conductance was decreased by the addition of ZnO in $SnO_2$, but it was increased with the addition of $SnO_2$ in ZnO. The conductance was increased with temperature and the inlet of CO. There was no improvement of sensitivity in the structure of mono- and double-layer. The hetero-layer structure, however, of $SnO_2$ 3ZnO-ZnO $3SnO_2$ showed the higher resistivity and the highest sensitivity. Ohmic characteristics was confirmed by the linear properties for I-V measurements.

a-Si:H/c-Si Heterojunction Solar Cell Performances Using 50 ㎛ Thin Wafer Substrate (50 ㎛ 기판을 이용한 a-Si:H/c-Si 이종접합 태양전지 제조 및 특성 분석)

  • Song, Jun Yong;Choi, Jang Hoon;Jeong, Dae Young;Song, Hee-Eun;Kim, Donghwan;Lee, Jeong Chul
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.35-40
    • /
    • 2013
  • In this study, the influence on the surface passivation properties of crystalline silicon according to silicon wafer thickness, and the correlation with a-Si:H/c-Si heterojunction solar cell performances were investigated. The wafers passivated by p(n)-doped a-Si:H layers show poor passivation properties because of the doping elements, such as boron(B) and phosphorous(P), which result in a low minority carrier lifetime (MCLT). A decrease in open circuit voltage ($V_{oc}$) was observed when the wafer thickness was thinned from $170{\mu}m$ to $50{\mu}m$. On the other hand, wafers incorporating intrinsic (i) a-Si:H as a passivation layer showed high quality passivation of a-Si:H/c-Si. The implied $V_{oc}$ of the ITO/p a-Si:H/i a-Si:H/n c-Si wafer/i a-Si:H/n a-Si:H/ITO stacked layers was 0.715 V for $50{\mu}m$ c-Si substrate, and 0.704 V for $170{\mu}m$ c-Si. The $V_{oc}$ in the heterojunction solar cells increased with decreases in the substrate thickness. The high quality passivation property on the c-Si led to an increasing of $V_{oc}$ in the thinner wafer. Short circuit current decreased as the substrate became thinner because of the low optical absorption for long wavelength light. In this paper, we show that high quality passivation of c-Si plays a role in heterojunction solar cells and is important in the development of thinner wafer technology.

Soft Magnetic Properties of CoFeHfO Thin Films (CoFeHfO 박막의 자기적 특성)

  • Lee, K.E.;Tho, L.V.;Kim, S.H.;Kim, C.G.;Kim, C.O.
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.4
    • /
    • pp.197-200
    • /
    • 2006
  • Amorphous alloys of Co-rich magnetic amorphous films are well known as thpical soft magnetic alloys. They are used for many kinds of electric and electronic parts such as magnetic recording heads, transformers and inductors. CoFeHfO thin films were prepared by RF magnetron reactive sputtering. The films were deposited onto Si(100) substrates with a power of 300 W at room temperature. The reactive gas was introduced up to 10% ($O_2$/(Ar + $O_2$)) during deposition, and the $Co_{39}Fe_{34}Hf_{9.5}O_{17.5}$ thin film exhibit excellent soft magnetic properties : saturation magnetization ($4{\pi}M_s$) of 19kG, magnetic coercivity ($H_c$) of 0.37 Oe, anisotropy field ($H_k$) of 48.62 Oe, and an electrical property is also shown to be as high as 300 ${\mu}{\Omega}cm$. It is assumed that the good soft magnetic properties of $Co_{39}Fe_{34}Hf_{9.5}O_{17.5}$ thin film results from high electrical resistivity and large anisotropy field.

Photoluminescence Characteristics of (Ca, Sr)2MgSi2O7:Eu2+ Phosphor Particles Prepared by Spray Pyrolysis (분무열분해법에 의해 제조된(Ca, Sr)2MgSi2O7:Eu2+ 형광체의 발광 특성)

  • Lee, Ho Min;Jung, Kyeong Youl;Jung, Ha-Kyun;Lee, Jong Heun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.284-288
    • /
    • 2006
  • $(Ca,Sr)_{2-y}MgSi_2O_7:Eu^{2+}{_y}$ (CMS) phosphor particles were prepared by using a spray pyrolysis process. The luminescent property was optimized by changing the content of Eu and the post-treatment temperature. The luminescence characteristics were also monitored with changing the ratio of Ca to Sr. The pure tetragonal $Ca_2MgSi_2O_7$ or $Sr_2MgSi_2O_7$ particles were obtained when the post-treatment temperature was over $1,000^{\circ}C$. The highest emission intensity of CMS particles were achieved when the concentration (y) of Eu and the treatment temperature were 0.05 and $1,250^{\circ}C$,respectively. The emission wavelength $({\lambda}_{max})$ of ${(Ca_{1-x},Sr_x)}_{1.95}MgSi_2O_7:{Eu^{2+}}_{0.05}$ was gradually shifted from 524 nm to 456 nm with increasing the content of Sr due to the reduction of crystal field strength. The emission intensity and its width of $Sr_2MgSi_2O_7:Eu$ was greatly enhanced by substituting Ca of less than 10 mol% for Sr without any significant peak shift. The morphology of as-prepared particles was spherical, but changed to irregular-shaped one after the post treatment at the temperature range from 900 at $1,300^{\circ}C$.

Comparative Study on Characteristic of Materials to Restore Traditional Gold Threads (전통 편금사 복원 및 재현을 위한 재료 특성 비교 연구)

  • Yu, Ji A;Kim, Ji Eun;Han, Ye Bin;Lee, Sang Hyeon;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.30 no.3
    • /
    • pp.307-315
    • /
    • 2014
  • The gold textile is Korean traditional weaving technique using the gold thread since 5th century. The making technique of gold thread was written in various references, but it is severed because the gold thread weaving equipment and sumptuous moods were forbidden in the early 18th century. There are some studies of traditional gold thread which are mainly about conservation treatment of cleaning and strength. To restore traditional gold thread, investigation of material and manufacturing technique is vitally required. The gold threads are composed of gold leaf, adhesive and base sheet. Gold leaf and base sheet are available for investigation because they are exposed to the surface, whereas adhesive is not easy to investigate because it is not exposed to the surface. In this study, samples are made of pure and impure gold, animal glue and lacquer, and various types of Hanji based on domestic and foreign references to compare materials for gold threads. As a result of morphological character and stability evaluation, the optimum materials for the restoration of gold threads are pure gold, animal glue and Dochimji(smoothing paper by beating). This study is expected to be basic data for manufacturing gold threads techniques and modernization of traditional gold threads hereafter research.

Analysis of Tack Properties of Aramid/Phenolic Prepreg (아라미드섬유/페놀수지 프리프레그의 Tack성 분석)

  • Hong, Tae Min;Lee, Ji Eun;Hong, Young Ki;Lee, Jung Soon;Cho, Dae Hyun;Lee, Seung Goo
    • Journal of Adhesion and Interface
    • /
    • v.14 no.3
    • /
    • pp.117-120
    • /
    • 2013
  • The prepreg material is a sheet of the reinforcement pre-impregnated with a resin. In this study, two types of prepreg were prepared with a general phenolic resin and the polyvinyl butyral (PVB) modified phenolic resin, respectively, with resin content of 40 wt%. After resin impregnation, the prepregs were heat treated in an oven to make them the B-stage. Surface morphology of the prepreg was observed by using a scanning electron microscope (SEM). Tack property of the prepreg is one of the major properties that govern the ability of prepreg to be laid up. In this study, the tack of prepreg was measured under various test parameters by a probe tact test. Test parameters were contact time, contact force and debonding rate. Most of the tack properties of the prepreg increased with the test parameters. Then tack properties exhibited a linear behavior with test parameters before a saturation point. Also, the tack of prepreg was investigated in relation with the fibrillation phenomena involved in the prepreg surface with the debonding rate.