• Title/Summary/Keyword: Material testing machine

Search Result 329, Processing Time 0.026 seconds

A study on the machinability of SUS304

  • Lim, K.Y.;Yu, K.H.;Seo, N.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.34-41
    • /
    • 1993
  • SUS304 is wellknown as difficult-to-machine materials. It is easy to appear workhardened, and workhardening is one of the causes of groove wear on the tool. In this paper, the author would like to compare the width of flank wear with that of groove wear, and to find whether the groove wear can be used as a criterion of a tool life. The design of the twelve tests provides three levels for each variable (speed: 200m/min, 118m/min, 70m/min; feed: 0.3mm/rev, 0.17mm/rev, 0.1mm/rev; depth of cut: 0.4mm, 0.28mm, 0.2mm). The study of tool-life testing by statistical technique follows usual most scientific sequence. So the tool-life predicting equation is calculated by the method of least squares. The overall adequacy of the model can be verified by the analysis of variance. The results obtained are as follows : 1) When SUS304 is cut in 200(m/min), the width of flank wear is much larger than that of groove wear. 2) In cutting speed 118m/min, flank wear is a little larger than groove wear and in the cutting speed 70m/min, the latter is a little larger so that it is reasonable to determine the tool life according the crierion by groove wear in the low cutting speed (less than 70m/min). 3) Owing to the burr the depth of engagement along the cutting edge is extended toward the shank.

  • PDF

The Optimization on Safety Color of Work Clothing Based on Functional Color-arrangement Planning and Field Test

  • Park, Hyewon
    • Journal of Fashion Business
    • /
    • v.18 no.6
    • /
    • pp.174-187
    • /
    • 2014
  • This study intended to propose a guideline designed to secure safety by developing a functional color design for the color of the ordinary working clothes worn in the actual industrial settings of the machine industry in national industrial complexes in Korea. For this, a total of 6 sets of actual working clothes were produced for test, using 2-color arrangements with blue, of varying brightness and chroma for top and bottom, in relation to the visibility proven in preceding studies and evaluated in the machine industry. Blue was suggested the best proper color for machine industry by previous studies. For the material of working clothes, a total of 111 swatches were collected from the Dongdaemoon Fabric Market, and they were analyzed for color values. A total of 6 materials were used to produce working clothes for testing, which represented high brightness, medium brightness, low brightness, high chroma, medium chroma, and low chroma. Clothes were tried at the industrial settings for machine industry in a national industrial complex located in Gyeongsangnam-do and the expert satisfaction evaluation was performed based on items related with safety. As a result, higher satisfaction was shown when the brightness difference of top and bottom clothes was greater, and for chroma, relatively higher satisfaction appeared when the chroma of both top and bottom clothes was high. To secure satisfaction for both brightness and chroma, it is possible to deduce that the 2-color arrangement using the strong tone with high brightness and high chroma and the dark tone with somewhat low brightness and high chroma would be effective. Top and bottom clothes in the same color with high chroma had high visibility but had somewhat low evaluation for harmonious arrangements. This indicated that the arrangement of vivid colors for top-bottom clothes is inappropriate.

Study on the Improvement of the Image Analysis Speed in the Digital Image Correlation Measurement System for the 3-Point Bend Test

  • Choi, In Young;Kang, Young June;Hong, Kyung Min;Kim, Seong Jong;Lee, Gil Dong
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.523-530
    • /
    • 2014
  • Machine material and structural strain are critical factors for appraising mechanical properties and safety. Particularly in three and four-point bending tests, which appraise the deflection and flexural strain of an object due to external force, measurements are made by the crosshead movement or deflection meter of a universal testing machine. The Digital Image Correlation (DIC) method is one of the non-contact measurement methods. It uses the image analyzing method that compares the reference image with the deformed image for measuring the displacement and strain of the objects caused by external force. Accordingly, the advantage of this method is that the object's surface roughness, shape, and temperature have little influence. However, its disadvantage is that it requires extensive time to compare the reference image with the deformed image for measuring the displacement and strain. In this study, an algorithm is developed for DIC that can improve the speed of image analysis for measuring the deflection and strain of an object caused by a three-point bending load. To implement this algorithm for improving the speed of image analysis, LabVIEW 2010 was used. Furthermore, to evaluate the accuracy of the developed fast correlation algorithm, the deflection of an aluminum specimen under a three-point bending load was measured by using the universal test machine and DIC measurement system.

FRACTURE TOUGHNESS OF VARIOUS CORE MATERIALS

  • Lee Shin-Won;Lee Sun-Hyung;Yang Jae-Ho;Han Jung-Suk;Lee Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.682-697
    • /
    • 2001
  • This investigation evaluated the fracture toughness($K_{IC}$) of eight currently available core materials, and relate the fracture toughness value to fractography analysis and surface characteristics using a atomic force microscope (AFM). Single-edge notched (SEN) test specimens (n=10) and compact tension (CT) test specimens (n=10) were prepared conforming to the ASTM Standard E-399 for a high copper amalgam, three composite core materials (Core-Max II, Core Paste, Bisfil Core), two reinforced composite core materials (Ti-Core, Ti-Core Natural), a resin-modified glass ionomer core material (Vitremer), and a conventional glass ionomer core material (Ketac-Molar). The specimens were tested with an Instron Universal Testing Machine. The maximum loads were measured to calculate the fracture toughness ($K_{IC}$). Thereafter, fracture surfaces of SEN specimens of each material were investigated for fractography analysis using scanning electron microscope. And, disc-shaped specimens with 1mm thickness were fabricated for each material and were investigated under AFM for surface morphology analysis. The results were as follows: 1. Bisfil Core showed the highest mean fracture toughness regardless of test methods. 2. For the tooth-colored materials, Ti-Core Natural exhibited the highest fracture toughness. 3. Ketac Molar showed a significantly low fracture toughness when compared with the amalgam and the composite resin core materials(p<0.05). 4. The fracture toughness values obtained with the single-edge notched test, except Ketac Molar, were higher than those obtained in the compact tension test. 5. SEM revealed that the fracture surface of high fracture toughness material was rougher than that of low fracture toughness material. 6. AFM revealed that the surface particles of the composite resins were smaller in size, with a lower surface roughness than the glass ionomer core materials.

  • PDF

Physical Properties of E-glass Fiber According to Fiberizing Temperature (섬유화 온도 변화에 따른 E-glass fiber의 물리적 특성)

  • Lee, Ji-Sun;Lee, MiJai;Lim, Tae-Young;Lee, Youngjin;Jeon, Dae-Woo;Hyun, Soong-Keun;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.43-47
    • /
    • 2017
  • E (Electric) -glass fibers are the most widely used glass fibers, taking up 90 % of the long glass fiber market. However, very few papers have appeared on the physical characteristics of E-glass fibers and how they depend on the fiberizing temperature of fiber spinning. Glass fiber was fabricated via continuous spinning process using bulk E-glass. In order to fabricate the E-glass specimen, raw materials were put into a Pt crucible and melted at $1550^{\circ}C$ for 2hrs; mixture was then annealed at $621{\pm}10^{\circ}C$ for 2hrs. The transmittance and adaptable temperature for spinning of the bulk marble glass were characterized using a UV-visible spectrometer and a viscometer. Continuous spinning was carried out using direct melting spinning equipment as a function of the fiberizing temperature in the range of $1175{\sim}1250^{\circ}C$, while the winder speed was fixed at 500 rpm. Subsequently we investigated the physical properties of the E-glass fiber. The average diameter of the synthesized glass fiber was measured by optical microscope. The mechanical properties of the fiber were confirmed using a UTM (universal materials testing machine); the maximum tensile strength was measured and found to be $1843{\pm}449MPa$ at $1225^{\circ}C$.

Comparison of two fracture toughness testing methods using a glass-infiltrated and a zirconia dental ceramic

  • Triwatana, Premwara;Srinuan, Phakphum;Suputtamongkol, Kallaya
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.1
    • /
    • pp.36-43
    • /
    • 2013
  • PURPOSE. The objective of this study was to compare the fracture toughness ($K_{Ic}$) obtained from the single edge V-notched beam (SEVNB) and the fractographic analysis (FTA) of a glass-infiltrated and a zirconia ceramic. MATERIALS AND METHODS. For each material, ten bar-shaped specimens were prepared for the SEVNB method ($3mm{\times}4mm{\times}25mm$) and the FTA method ($2mm{\times}4mm{\times}25mm$). The starter V-notch was prepared as the fracture initiating flaw for the SEVNB method. A Vickers indentation load of 49 N was used to create a controlled surface flaw on each FTA specimen. All specimens were loaded to fracture using a universal testing machine at a crosshead speed of 0.5-1 mm/min. The independent-samples t-test was used for the statistical analysis of the $K_{Ic}$ values at ${\alpha}$=0.05. RESULTS. The mean $K_{Ic}$ of zirconia ceramic obtained from SEVNB method ($5.4{\pm}1.6\;MPa{\cdot}m^{1/2}$) was comparable to that obtained from FTA method ($6.3{\pm}1.6\;MPa{\cdot}m^{1/2}$). The mean $K_{Ic}$ of glass-infiltrated ceramic obtained from SEVNB method ($4.1{\pm}0.6\;MPa{\cdot}m^{1/2}$) was significantly lower than that obtained from FTA method ($5.1{\pm}0.7\;MPa{\cdot}m^{1/2}$). CONCLUSION. The mean $K_{Ic}$ of the glass-infiltrated and zirconia ceramics obtained from the SEVNB method were lower than those obtained from FTA method even they were not significantly different for the zirconia material. The differences in the $K_{Ic}$ values could be a result of the differences in the characteristics of fracture initiating flaws of these two methods.

Simulation of Low Velocity Impact of Honeycomb Sandwich Composite Panels for the BIMODAL Tram Application (바이모달 트램 적용 하니컴 샌드위치 복합재 패널의 저속 충격 해석)

  • Lee, Jae-Youl;Jeong, Jong-Cheol;Shin, Kwang-Bok
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.42-50
    • /
    • 2007
  • This paper describes the results of experiments and numerical simulation studies on the low-velocity impact damage of two different sandwich composite panels for application to bodyshell and floor structure of the BIMODAL tram vehicle. Square test samples of 100mm sides were subjected to low-velocity impact loading using an instrumented testing machine at four impact energy levels. Part of this work presented is focused on the finite element analysis of low-velocity impact response onto a sandwich composite panels. It is based on the application of explicit finite element (FE) analysis codes LS-DYNA 3D to study the impact response of sandwich structures under low-velocity impact conditions. Material testing was conducted to determine the input parameters for the metallic and composite material model, and the effective equivalent damage model for the orthotropic honeycomb materials. Numerical and experimental results showed a good agreement for damage area and the depth of indentation of sandwich composite panels created by the impact loading.

Effect of Silicone-modified Microsilica Content on Electrical and Mechanical Properties of Cycloaliphatic Epoxy/Microsilica System

  • Park, Jae-Jun;Yoon, Chan-Young;Lee, Jae-Young;Cheong, Jong-Hoon;Kang, Geun-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.155-158
    • /
    • 2016
  • The effect of microsilica content modified with silicone-modified epoxy on electrical and mechanical properties of cycloaliphatic epoxy/microsilica system was investigated. The cycloaliphatic epoxy resin was diglycidyl 1,2-cyclohexanedicarboxylate and curing agent was an anhydride. Surface of microsilica was modified with silicone-modified epoxy. Electrical breakdown strength, the most important property for electrical insulation materials was tested. Tensile and flexural tests were also performed using universal testing machine (UTM). The microcomposite with 60 wt% microsilica shows maximum values in electrical breakdown strength.

The Weatherability and Chemical Resistance of CFRP (탄소섬유판 복합재료의 내후성/내화학성에 관한 연구)

  • 최영철;윤희석
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.151-154
    • /
    • 2002
  • The durability of two kinds of CFRP plates, carbon/UP and carbon/V, was studied under severe environmental conditions. Immersion into the chemical solutions and accelerated weathering were executed on the CFRP plates and the weight change under each condition was measured. After those treatments, the plates were tested by tensile testing machine to measure the mechanical properties and observed by SEM to find the damage behaviour of the surface. Comparing the virgin plates and the chemically exposed plates, both plates show severe deterioration of the mechanical properties. But, the plates subjected to alkali solution show much larger reduction than those of acidic solution and carbon/V has better chemical resistance than carbon/UP. The material properties of CFRP plate exposed to the weathering were deteriorated linearly proportional to the exposure time.

  • PDF

A Study on Shape Optimization for Seal Groove of Disc Caliper using Finite Element Method and Taguchi's Method (유한요소해석과 다구찌 방법에 의한 디스크 캘리퍼 씰 홈의 형상 최적화에 관한 연구)

  • Kim, Jin-Han;Kim, Soo-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.88-94
    • /
    • 2006
  • A typical disk brake system consists of caliper housing, piston, seal and two pads etc. The configuration of seal groove, dimension of piston and seal, and seal material properties are important ones for brake performance, as these affect the retraction of piston. The rubber seal is designed to perform dual functions of sealing the brake oil at brake-applied and retracting the caliper piston at brake-released. In this paper, the seal stress is analyzed using Finite Element Method and experiment is conducted by Taguchi's Method. We attempt to quantify the critical design factors in the seal groove and evaluate their impact on some of brake performance factors. The investigation obtained from this study can not only enhance the seal groove design optimization, but also reduce product prototype testing and development time.