• Title/Summary/Keyword: Material simulation

Search Result 3,722, Processing Time 0.027 seconds

Design and simulation of small size high-Tc superconducting magnet (소형 고온 초전도 마그넷 설계 및 시뮬레이션)

  • 김민기;강형곤;정동철;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.192-197
    • /
    • 1994
  • High-Tc superconducting magnet properties were dependent upon design conditions such as its radius, length, critical current and notch size. In order to study, design and the simulation for small size magnet were implemented. We know that intensity of magnetic fields controled by critical current and factor ${\alpha}$( R$_2$/R$_1$) and uniformity controled by notch size. The optimal condition of intensity and uniformity magnetic field in this experiments are R$_1$=3[cm], R$_2$=12[cm], Z=10[cm], ${\alpha}$=4, notch=6[cm], critical current=12[A].

A Study on the Properties of SiC Nanotubes: Molecular Dynamics Simulation (탄화규소 나노튜브의 특성에 관한 연구: 분자동역학 전산모사)

  • 문원하;함정국;황호정
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.454-459
    • /
    • 2003
  • We investigate the structure and properties of SiC (Silicon Carbide) nanotubes using molecular dynamics simulation based on the Tersoff bond-order potential. For small diameter tubes, the Si-C bond distance of SiC nanotubes decreases as the nanotube diameter is decreased, due to curvature of the nanotube surface. We find that Young's modulus of SiC nanotubes is somewhat smaller than that of the other nanotubes considered so far. However, Young's modulus for SiC nanotubes is larger than that of ${\beta}$-SiC and almost equal to the experimental value for SiC nanorod and SiC whisker. The strain energy of the SiC nanotubes is also lower than that of the other nanotubes. The lower strain energy of SiC nanotubes raises the possibility of synthesis of SiC nanotubes.

Electric Field Simulation and Characteristics of Water Treatment Apparatus using Dielectrics (유전체를 이용한 수처리장치의 전계시뮬레이션 및 수처리 특성)

  • Hwang, In-Ah;Lee, Hyun-Soo;Han, Byung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.333-335
    • /
    • 2005
  • The simulation of electric field distribution of discharge tube with globular $ZrO_2$ and the removal characteristic of Escherichia coli by the discharge tube with globular $ZrO_2$ were estimated. The removal characteristic of Escherichia coli was related to the input voltage because the electric field is increased according to input voltage. As the particle size of $ZrO_2$ beads increased, the removal time of Escherichia coli was shortened due to the dielectric polarization of $ZrO_2$ beads.

  • PDF

The optical coupling characteristics of $K^{+}$ and $Ag^{+}$ ion-exchanged waveguide ($K^{+}$$Ag^{+}$ 이온교환 도파로의 광결합 특성)

  • 김홍석;이병석;천석표;이현용;정흥배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.284-287
    • /
    • 1996
  • In this paper, we investigated the optical coupling characteristics for $K^{+}$ ion-exchanged diffused channel waveguide by using coupled-mode equations. In this case, the optical-power-dividing was observed at the waveguide-type optical coupler with 3[$\mu\textrm{m}$] line-width and, 6[$\mu\textrm{m}$] separation between channel waveguides in which interaction lengths were 1 and 3[mm], respectively, On the basis of that we deformed simulation for $Ag^{+}$ ion-exchanged diffused channel waveguide. As a result of simulation, the optical-power-dividing was shown at the waveguide-type optical coupler wish 3[$\mu\textrm{m}$] line-width, 6[$\mu\textrm{m}$] separation between channel waveguides and 0.11[mm] interaction length.

  • PDF

Simulation for Electro-Optic Characteristics of the Fringe-Field Driven Reflective Hybrid Aligned Nematic Liquid Crystal Display with One Polarizer (1매의 편광판으로 구성된 Fringe-Field 구동형 반사형 Hybrid Aligned Nematic 액정디스플레이의 전기-광학 특성에 관한 시뮬레이션)

  • 박지혁;정태봉;이종문;김용배;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.908-913
    • /
    • 2003
  • We have performed computer simulation to obtain electro-optic characteristics of reflective hybrid aligned nematic liquid crystal displays (LCDs) driven by fringe field. The results show that the optimal retardation value (dΔn) of the cell is 0.289 ${\mu}$m, which allows for the cell to have a practical cell gap of larger than 3 ${\mu}$m when manufacturing. A reflectance of the dark state is only 0.114 % for an incident light 550 nm. At this condition, the light efficiency of white state reaches 92.7 %. The display with optimized cell parameters shows that the contrast ratio greater than 5 exists over 600 of polar angle in all directions and lower driving voltage than that of fringe-field driven homogeneously aligned reflective LCD.

Electromechanical Simulation of Cellulose Based Biomimetic Electro-Active Paper (생체모방 종이작동기(electro-active paper)의 전기기계적인 구동 시뮬레이션)

  • Jang, Sang-Dong;Kim, Jae-Hwan;Kim, Heung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1179-1183
    • /
    • 2007
  • Electro-Active paper(EAPap) is a new smart material that has a potential to be used in biomimetic actuator and sensor. It is made by cellulose that is abundant material in nature. EAPap is fascinating with its biodegradability, lightweight, large displacement, high mechanical strength and low actuation voltage. Actuating mechanism of EAPap is known to be the combined effects of ion migration and piezoelectricity. However, the electromechanical actuation mechanisms are not yet to be established. This paper presents the modeling of the actuation behavior of water infused cellulose samples and their composite dielectric constants calculated by Maxwell-Wagner theory. Electro-mechanical forces were calculated using Maxwell stress tensor method. Bending deflection was evaluated from simple beam model and compared with experimental observation, and which result in good correlation with each other.

FEM Analysis of Blanking of Mild Steel Sheet at Various Punch Speeds (연강 판재의 속도에 따른 블랭킹의 유한요소해석)

  • Song, Shin-Hyung;Choi, Woo Chun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.458-461
    • /
    • 2016
  • In this study, a finite element analysis for high-speed blanking of mild steel is performed. A thermomechanically coupled simulation model of a blanking process was developed using ABAQUS/Explicit. Through a simulation of the high-speed blanking process of mild steel, the influence of the punch speed, tool edge radius, and work material thickness on the development of the plastic heat and punch load were studied. The results of the study revealed that a higher punch speed caused thermal softening of the work material and decreased the punch load. Decreasing tool edge radius could help reduce the punch load. In addition, the results of the study revealed that the thermal softening effect was more dominant in the blanking of a mild steel sheet with a greater thickness as compared to that in the blanking of a mild steel sheet with a lower thickness.

Electron Swarm Drift Velocity and Characteristic Energy in e$^{[-10]}$ -CF$_4$Scattering (e ̄-CF$_4$산란의 전자이동속도 및 특성에너지 연구)

  • 임상원;유회영;김상남;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.169-174
    • /
    • 1996
  • In this paper, the electron transport characteristic in CF$_4$has been analysed over the E/N range 1~300(Td) by a two-term approximation Boltzmann equation method and by a Monte Carlo simulation. The alteration of cross sections from the literature is avoided as much as possible in the analysis. The motion has been calculated to give swarm parameters for the electron drift velocity(W), diffusion coefficient(D$_{L}$), the ratio of the diffusion coefficient to the mobility(D$_{L}$/$\mu$), mean energy($\varepsilon$), the electron energy distribution function. The electron energy distribution function has been analysed in CF$_4$at E/N=50, 100 and 200(Td) for a case of the equilibrium region in the mean electron energy. The results of Boltzmann equation and Monte Carlo simulation have been compared with experimental data by Y. Nakamura and M. Hayashi.shi.

  • PDF

A Study of Three Dimensional Ion Implantation Simulator (3차원 이온 주입 시뮬레이터 개발에 관한 연구)

  • 송재복;원태영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.93-96
    • /
    • 1996
  • We developed three dimensional Monte carlo ion implantation simulator which simulate distributions of impurities under the ion implantation on the tilted multi-layered layer. Our simulation reveals three dimensional shadow effect and sidewall scattering effect due to the geometrical shapes. For the evaluation of the developed three dimensional Monte carlo ion implantation simulator, calculations with 100,000 ions have been performed for the island and hole structures with a thin oxide of 100$\AA$ and nitride of 2000$\AA$. The simulation results showed that the distribution of ion decreases near the conner of the hole structure covered with a nitride layer and increases near the conner for the island structure open to oxide. Moreover, three dimensional distributions of ions were obtained with varying incident energy, tilt and rotation angle, mask depth and three-dimensional structure geometry.

  • PDF

Simulation of the Strip Type CNT Field Emitter Triode Structure (띠 모양의 에미터를 가지는 탄소나노튜브 삼전극 전계방출 디스플레이 소자의 시뮬레이션)

  • 류성룡;이태동;김영길;변창우;박종원;고성우;천현태;고남제
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1023-1028
    • /
    • 2003
  • The field emission characteristics are studied by simulation for carbon nanotube triode structures with a strip-shaped emitter and a gate hole aligned with it. Two structures, one with double-edge and the other with single edge are analyzed. They show good emission characteristics. Emissions of electrons are concentrated on the edges of emitter and the emitted current increases as the distance between emitter and gate decreases. For single-edged emitter, the emitted electrons form a narow strip-shaped beam which has a good directionality. These triode structures have advantages in that they can be easily fabricated and aligned for assembly.