• Title/Summary/Keyword: Material fracture

Search Result 1,963, Processing Time 0.027 seconds

Fracture Characteristics and Stress Analysis of $Si_3N_4/SM45C$ Joint ($Si_3N_4/SM45C$ 접합부의 응력해석 및 파괴특성)

  • 김기성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.248-253
    • /
    • 1998
  • Recently, the uses of Ceramic/metal bonded joints, resin/metal joints, adhesive joints, composite materials which are composed of dissimiliar materials have increased in various industry fields. Since the ceramic/metal bonded joints material is made at a high temperature, residual stress distributions due to differences in material properties were investigated by varying material parameters. The two dimensional finite element analysis was performed to study residual stress distribution in Si3N4/SM45C bonded joint with a copper interlayer between the silicon nitride(Si3N4) and the structural carbon steel(SM45C) and 4-point bending tests were carried out under room temperature. Fracture surface and crack propagation path were observed using scanning electron microscope and characteristics of its fracture was discussed.

  • PDF

A Study on the Fracture Stress in Miniaturized Charpy Impact Specimens (소형 샤르피 충격시험편에서의 파괴응력에 관한 연구)

  • Nahm, Seung-Hoon;Kim, Am-Kee;Lee, Dae-Yeol;Kim, Si-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.132-137
    • /
    • 2001
  • Miniaturized specimen technology is useful to characterize the mechanical behavior using a minimum volume of material, because it is almost impossible to sample the conventional specimen for the fracture toughness test without damage to equipment. Test material was 1Cr-1Mo-0.25V steel which was widely used for turbine rotor material. Two kinds of miniaturized impact specimens were prepared, i.e., miniaturized specimen with side groove and without side groove. The correlation between ductile brittle transition temperature(DBTT) of full size impact specimen and that of miniaturized impact specimen was made. The characteristics of miniaturized impact specimens technique as well as fracture stress were discussed. Finally, we concluded that the characteristics of fracture stress change on aging time were similar to that of DBTT.

  • PDF

Mixed-Mode Fracture Analysis of Quasi-Brittle Material Considering Fracture Energy (파괴에너지를 고려한 유사취성재료의 혼합모드 균열해석)

  • Lim, Yun-Mook;Kim, Moon-Kyum;Cho, Seok-Ho;Shin, Seung-Kyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.129-137
    • /
    • 2002
  • In this study, mixed-mode fracture behavior is simulated effectively through the numerical method using the axial defomation link elements which can predict the behavior of quasi-brittle material. The behavior of quasi-brittle material is modeled numerically using the exponential tension softening constitutive equation and verified by comparing with the result of published experimental result. In order to verify the mixed-mode fracture behavior through the developed numerical method, analysis of mode I is formulated and the result is compared with those of FEM first, and then mixed-mode analysis is analyzed and compared with existing theories and experimental data. Also the characteristics of fracture behavior is examined through the analysis of crack generation with respect to various mode mixity.

Standardization of Fracture Toughness Testing of Ceramics in the United States

  • Quinn, G.D.;Jenkins, M.J.;Salem, J.;Bar-On, I.
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.311-322
    • /
    • 1998
  • American Society for Testing and Materials (ASTM) standard test method PS 070-97 has been created for measuring fracture toughness of advanced ceramics. PS 070-97 includes three test methods which use beams in bending: chevron notch (CNB), single-edged precracked beam (SEPB), and surface crack in flexure (SCF). Supporting data has been collected through several Versailles Advanced Materials and Standards round robins. This paper discusses the evolution of the standard including the rationale for the choice of the three methods and the specifications in the standard. Progress on Standard Reference material 2100 which will have certified values of fracture toughness is presented.

  • PDF

Effect of Side Groove on the Elastic Plastic Fracture Toughness of Gas Piping Material (가스배관재의 탄소성파괴인성에 미치는 측면홈 영향)

  • 임만배;차귀준;윤한기;공유식;김정호
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.63-68
    • /
    • 2001
  • SG-365 steel is an important material and used for manufacturing a pressure vessel which the gas piping. In this investigation, the elastic plastic fracture toughness of this material is evaluated by the an unloading compliance method according to the ATM E813-97 method on the smooth and side groove 1CT specimens. The effect of smooth and side groove is studied on the elastic plastic fracture toughness. The side grooved specimen is very useful in estimation of the $J_IC. Because it is much easier than the smooth specimen to the onset of the ductile tearing by the R curve method. Besides, it improves the accuracy of toughness values, decreases the scattering of them and tunneling and shear lip by the side groove.

  • PDF

Estimation of Tearing Energy for Fatigue Life Prediction of Rubber Material (고무의 피로 수명 예측을 위한 찢김에너지 수식화)

  • Kim, Ho;Kim, Heon-young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.172-177
    • /
    • 2004
  • Fatigue life prediction is based on fracture mechanics and database which is established from experimental method. Rubber material also uses the same way for fatigue life prediction. But the absence of standardization of rubber material, various way of composition by each rubber company and uncertainty of fracture criterion makes the design of fatigue life by experimental method almost impossible. Tearing energy which has its origin in energy release rate is evaluated as fracture criterion of rubber material and the applicability of fatigue life prediction method are considered. The system of measuring tearing energy using the principal of virtual crack extension method and fatigue life prediction by the minimum number of experiments are proposed.

  • PDF

Influence of Notch Change on Corrosion Fatigue Fracture in F.E.M. Dual phase Steel of SS41 Steel (SS41강의 F.E.M.복합조직강에서 노치변화가 부식피로파괴에 미치는 영향)

  • 도영민;이규천
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.44-50
    • /
    • 2001
  • The rotated bending fatigue test was conducted in air md in 3.5% NaCl salt solution to investigate the fatigue fracture behaviour of raw material and F.E.M dual phase steel made from raw material(SS41) by a suitable heat treatment. This study has compared the initial microcrack creation of material by tensile test with that by fatigue test. And the rotated bending test of cantilever type under the condition of 3.5% NaCl salt solution and air has investigated the corrosion fatigue fracture behaviour with the variation of stress concentration factor determined by each of notch shapes. The initial microcrack have been developed in fragile grainboundary with general corrosion occurring in raw material : in the pits built up by corrosion in F.E.M. dual phase steel because pits bring out stress concentration. It is small that the degree of decrease in corrosion fatigue life for F.E.M. dual phase steel compared with raw material because the notch sensitivity of F.E.M. dual phase steel is lower than raw material in reason of characteristics with two-phase construction.

  • PDF

A study on the fracture toughness degradation in cryogenic structural material using single-specimen method (단일 시험편법에 의한 극저온용 구조재료의 파괴인성 저하에 관한 연구)

  • Kwon, Il-hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.343-351
    • /
    • 1998
  • This paper was investigated degradation of the fracture toughness caused by sensitizing heat-treatment of the cryogenic structural material JN1 base metal using unloading compliance method reported as useful a method in evaluating the elastic-plastic fracture toughness at cryogenic temperature. The specimens used in this paper were 20% side-grooved 0.5T-CT specimens which were machined in the JN1 base metal. Also, to investigate cryogenic fracture toughness of the fusion line region in the JN1 GTA weldments, it was also used 20% side-grooved 0.5T-CT specimens that was machined fusion line to located in the middle of the specimen. The cryogenic fracture toughness values of the JN1 base metal were significantly decreased with increasing the time and temperature of the heat treatment. The fracture toughness value obtained from the fusion line specimen was invalid, but it was lower value than that of the JN1 base metal. Especially, this value was approximately equal with that obtained from the JN1 650.deg. C-5h heat-treated material.

A study on the Relations Between Fracture Strain and Fracture Resistance Curve of nuclear Pressure Vessel Steel (압력용기강의 파괴저항곡선의 파괴변형률에 관한 연구)

  • 임만배
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.44-51
    • /
    • 2000
  • Safety and integrity are required for reactor pressure vessels because they are operated in high temperature. There are single specimen method multiple specimen method and load ratio analysis method which used as evaluation of safety and integrity for reactor pressure vessels. In this study the fracture resistance curve(J-R curve) elastic-plastic fracture toughness($J_{IC}$) and material tearing modulus ($T_{mat}$) of SA 508 class 3 alloy steel used as reactor pressure vessel steel are measured and evaluated at room temperature 20$0^{\circ}C$ and 30$0^{\circ}C$ according to unloading compliance method and load ration analysis method. And then the comparison with experimental $J_{IC}$ and theoretical$J_{IC}$ by local fracture strain is managed.

  • PDF

Evaluation of Fracture Toughness and AE Characteristics in Functionally Gradient Material by means of MSP Test (MSP 시험법에 의한 경사기능재료의 파괴인성 및 AE 특성 평가)

  • 송준희;임재규;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.631-638
    • /
    • 1995
  • In this study, mechanical characteristics test of Functionally Gradient Materia (FGM) was performed by means of Modified Small Punch (MSP) Test with FGM; NiCrAlY-8YSZ and PSZ-Ni. To determine fracture mechanic factor, it was carried out MSP test that has possibility with small specimen (10*10*0.5 mm$^{t}$ ) and AE test to analyze micro fracture mechanism. As a result, fracture behavior became varied from brittle fracture to ductile as the content of Ni(or NiCrAlY) composition was increased and fracture energy was increased too. AE characteristics demonstrated that AE technique can detect the onset of fracture processes and AE energy was suddenly increased in the vicinity of maximum load. Since Young's modulus, fracture stress and fracture toughness was determined by MSP test, it can be known that the composition of NiCrAly 75%/8YSZ25% has the best mechanical property and furthermore this result is supported with fracture surface observation.