• Title/Summary/Keyword: Material fracture

Search Result 1,963, Processing Time 0.028 seconds

Mechanical strength of Zirconia Abutment in Implant Restoration (지르코니아 임플란트 지대주의 기계적 강도에 관한 연구)

  • Shin, Sung-ae;Kim, Chang-Seop;Cho, Wook;Jeong, Chang-Mo;Jeon, Young-Chan;Yun, Ji-Hoon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.349-360
    • /
    • 2009
  • Purpose: As the esthetic demands of dental implant patients are increased, the demands of zirconia as implant abutment material are also increased. It has non-metalic color, good biocompatibility, high strength and high toughness. Even thought the advatage of zirconia abutment, there are a few studies about mechanical properties of zirconia abutment. This study evaluated the mecanical strength with compressive bending strength and endurance limit of implant-zirconia abutment assembly. Materials and Methods: Static and cyclic loading of implant-Zirconia abutment assembly were simulated under worst case condition according to ISO. Test groups were implants of external butt joint with straight regular diameter and angled regular diameter zirconia abutment, implant of external butt joint with narrow straight diameter zirconia abutment and implant of internal conical joint with straight narrow diameter zirconia abutment. All test group were evaluated the mecanical strength with compressive bending strength and endurance limit. After fatique testing, fracture surface were examined by SEM. Results: The compressive bending strengths exceed 927N. Regular diameter zirconia abutment were stronger than narrow diameter zirconia abutment(P<.05). The endurance limits ranged from 503N to 868N. Conclusion: Within the limitation of this study, zirconia implant abutment exceeded the estabilished values for maximum incisal biting forces reported in the literature.

Development of Intelligent Multiple Camera System for High-Speed Impact Experiment (고속충돌 시험용 지능형 다중 카메라 시스템 개발)

  • Chung, Dong Teak;Park, Chi Young;Jin, Doo Han;Kim, Tae Yeon;Lee, Joo Yeon;Rhee, Ihnseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1093-1098
    • /
    • 2013
  • A single-crystal sapphire is used as a transparent bulletproof window material; however, few studies have investigated the dynamic behavior and fracture properties under high-speed impact. High-speed and high-resolution sequential images are required to study the interaction of the bullet with the brittle ceramic materials. In this study, a device is developed to capture the sequence of high-speed impact/penetration phenomena. This system consists of a speed measurement device, a microprocessor-based camera controller, and multiple CCD cameras. By using a linear array sensor, the speed-measuring device can measure a small (diameter: up to 1 2 mm) and fast (speed: up to Mach 3) bullet. Once a bullet is launched, it passes through the speed measurement device where its time and speed is recorded, and then, the camera controller computes the exact time of arrival to the target during flight. Then, it sends the trigger signal to the cameras and flashes with a specific delay to capture the impact images sequentially. It is almost impossible to capture high-speed images without the estimation of the time of arrival. We were able to capture high-speed images using the new system with precise accuracy.

Analysis of Hypervelocity Impact Fracture Behavior of Multiple Bumper Steel Plates (다층 강재 방호판의 초고속 충격 파괴거동해석)

  • Jo, Jong Hyun;Lee, Young Shin;Kim, Jae Hoon;Bae, Yong Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.761-768
    • /
    • 2013
  • New warheads are designed and developed to be highly lethal when used as part of ballistic missile payloads. There are many trades associated with the design of a central warhead core, mainly dealing with the projectiles or penetrators. Obviously, a payload-type configuration is very susceptible to kills from one projectile because of the high impacts required for bomblet or submunition payloads. Based on these requirements, the optimum kill vehicle configuration will have the smallest mass and relative velocity that will kill all the submunitions. The designs of the penetrator shape and size are directly related to the space and weight of the warhead. The shape, size, L/D, penetrator material, and manner in which they are inserted inside the surrounding explosive segments are critical in achieving successful penetrator design. The AUTODYN-3D code was used to study the effect of penetrator penetration. The objective of numerical analysis was to determine the penetration characteristics of the penetrator produced by hypervelocity impacts under different initial conditions such as initial velocity, shape, and L/D of the penetrator.

Long-term clinical and experimental/surface analytical studies of carbon/carbon maxillofacial implants

  • Szabo, Gyorgy;Barabas, Jozsef;Bogdan, Sandor;Nemeth, Zsolt;Sebok, Bela;Kiss, Gabor
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.34.1-34.14
    • /
    • 2015
  • Background: Over the past 30-40 years, various carbon implant materials have become more interesting, because they are well accepted by the biological environment. The traditional carbon-based polymers give rise to many complications. The polymer complication may be eliminated through carbon fibres bound by pyrocarbon (carbon/carbon). The aim of this study is to present the long-term clinical results of carbon/carbon implants, and the results of the scanning electron microscope and energy dispersive spectrometer investigation of an implant retrieved from the human body after 8 years. Methods: Mandibular reconstruction (8-10 years ago) was performed with pure (99.99 %) carbon implants in 16 patients (10 malignant tumours, 4 large cystic lesions and 2 augmentative processes). The long-term effect of the human body on the carbon/carbon implant was investigated by comparing the structure, the surface morphology and the composition of an implant retrieved after 8 years to a sterilized, but not implanted one. Results: Of the 16 patients, the implants had to be removed earlier in 5 patients because of the defect that arose on the oral mucosa above the carbon plates. During the long-term follow-up, plate fracture, loosening of the screws, infection or inflammations around the carbon/carbon implants were not observed. The thickness of the carbon fibres constituting the implants did not change during the 8-year period, the surface of the implant retrieved was covered with a thin surface layer not present on the unimplanted implant. The composition of this layer is identical to the composition of the underlying carbon fibres. Residual soft tissue penetrating the bulk material between the carbon fibre bunches was found on the retrieved implant indicating the importance of the surface morphology in tissue growth and adhering implants. Conclusions: The surface morphology and the structure were not changed after 8 years. The two main components of the implant retrieved from the human body are still carbon and oxygen, but the amount of oxygen is 3-4 times higher than on the surface of the reference implant, which can be attributed to the oxidative effect of the human body, consequently in the integration and biocompatibility of the implant. The clinical conclusion is that if the soft part cover is appropriate, the carbon implants are cosmetically and functionally more suitable than titanium plates.

Analytical study to the Brake Lever in Basic Brake System for Railway Vehicle (철도차량용 기초제동장치의 제동레버 강도에 대한 해석적 연구)

  • Park, Su-Myung;Park, Jae-young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.624-629
    • /
    • 2016
  • A brake lever in a basic railway brake system is an important safety device that delivers braking force from the brake cylinder to the brake pad. The safety guidelines for designing rolling stock only qualitatively describe that the brake lever should have sufficient strength. Each train has a different type of brake lever. One brake lever that was designed with a factor of safety of 1.27 has failed, so the material was changed to increase the strength. Therefore, the stress distribution and weak points of the lever were identified by theoretical analysis. and structural analysis. Different brake lever designs were examined for KTX high-speed trains, which have a split-type structure, as well as for electric locomotives, which use an electric multiple unit (EMU) with a unity-type structure. A fracture test was also done to look at the relationship between the vertical stress and the bending stress during braking. The results were used to find a safety factor to apply to each train and suggest quantitative minimum guidelines. We also looked at changing the unity-type EMU brake lever to the split type under the same conditions and analyzed how much the design change affected the factor of safety.

The quality improvement study on the crack of heat exchanger lubricating oil port in military aircraft (군용항공기 열교환기 윤활유 유입포트 균열개선 연구)

  • Park, Sung-Jae;Choi, Jae-Ho;Choi, Gil-Gyu;Lee, Dong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.164-172
    • /
    • 2020
  • The fuel oil/heat exchanger installed in military aircraft is a device that cools the lubricant oil supplied to other devices, such as an AMAD, and a hydraulic pump using the low temperature of the fuel is cracked at the AMAD lubricant inlet port. If a crack in the heat exchanger occurs, the lubricant oil supplied to other equipment is not cooled. Therefore, the flight can no longer be performed. In this study, non-destructive inspection and microscopic examination of the fracture surface of the oil port were performed to analyze the crack tendency. The oil pipe connected to the oil port is a titanium pipe, which is fastened with over torque and has been identified as the leading cause of heat exchanger oil port cracks. In addition, it was verified as the main reason for cracking by finite element analysis. The material and diameter of the pipe were changed to improve this defect, and the applied torque was adjusted. In addition, the bending value of the pipe was adjusted to minimize the fatigue accumulation due to pulsating pressure. As a result, no cracks occurred on the heat exchanger via the ground test after the installation of an improved pipe under the same conditions.

Experimental Evaluation of Seismic Column Splice with Partial Joint Penetration Welds (부분용입용접 내진기둥 이음부의 강도평가)

  • Lee, Cheol Ho;Kim, Jae Hoon;Kim, Jung Jae;Oh, Sang Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.817-827
    • /
    • 2008
  • The seismic performance of a column splice fabricated with PJP (partial joint penetration) welds for special moment frames was experimentally evaluated in this study. The steel materials that were used for the specimens included SHN490 and SN490 steel, or the newly developed structural steel for seismic application. Fabricating the column splice with PJP welds is highly attractive from the perspective of reducing the welding cost and the construction time. PJP welds in column splices are viewed apprehensively, however, because several tests have shown that PJP welds in thick members tend to become brittle under tensile loads. The column splices in this testing program were designed for the expected plastic moment of the column that current seismic codes typically require. The design strength of partial-penetration welded joints was determined according to the 2005 AISC-LRFD Specification. Three-point loading was applied monotonically, using a universal testing machine, such thatthe column splice joints were subjected to pure tension. The test results showed that the PJP welded splices, if designed properly, can develop a strength exceeding that of the actual plastic moment of the column. The specimen made of the SM490 rolled section, however, showed a brittle fracture at the splice soon after achieving the actual plastic moment of the column. The tensile coupon test results also showed that the material properties of SM490 steel are more unpredictable. Overall, although the test data are limited, the SHN490 and SN490 steel specimens showed a superior and reliable performance.

Clinical Review of Totally Implantable Venous Catheter (완전 거치형 정맥도관의 임상분석)

  • Kim, Jung-Tae;Oh, Tae-Yoon
    • Journal of Chest Surgery
    • /
    • v.40 no.10
    • /
    • pp.691-695
    • /
    • 2007
  • Background: The introduction of central venous catheters in 1979 has aided the administration of chemotherapy to oncologic patients. We analyzed the clinical reviews and complications of totally implantable venous catheters in an effort to achieve optimal management. Material and Method: We retrospectively studied 100 cases with totally implantable venous catheter at our hospital and we report the results. Result: 100 totally implantable venous catheters were placed in the right subclavian vein in 74 cases (74%), the left subclavian vein in 21 cases, the right jugular vein in 3 cases, the left jugular vein in 1 case and the right femoral vein in 1 case. The immediate complications were 5 cases in malposition of the catheter and 5 cases of arterial puncture. The late complications were 1 case of subclavian vein thrombosis, which was treated with anticoagulation, and 2 cases of pinch-of syndrome. There were no other early or late complications. Conclusion: The low rate of complications in this study confirms the safety and convenience of using totally implantable venous catheter in patients undergoing prolonged chemotherapy. Yet because Infection, thrombosis, and catheter fracture are the most common long term complications of totally implantable venous catheters, early diagnosis and management of these problems can prevent severe complications.

Evaluation of shear bond strength between metal core fabricated by 3D printing and dental porcelain (3D printing으로 제작된 금속 코어와 치과용 도재 간의 전단결합강도 평가)

  • Jung, Jae-Kwan;Lee, Su-Ok;Kim, Ki-Baek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2585-2592
    • /
    • 2015
  • The purpose of this study was to evaluate the shear bond strength between metal core fabricated by 3D printing and dental porcelain. Thirty metal cores were fabricated(cast 15ea, 3D printing 15ea). The porcelain for each group was builded to the metal core. Sample was loaded to shear force(crosshead speed 1mm/min) in a universal material testing machine. The fracture samples were analyzed failure aspect. The means were statistical analyzed using by Mann-whitney test(${\alpha}=0.05$). The period of experimental(metal cores fabrication, dental porcelain build up, data analysis, statistical analysis, failure aspect analysis and others) for this study took six months. The $mean{\pm}SDs$ of shear bond strength was $50.14{\pm}1.60MPa$ for the cast group, and $54.36{\pm}3.18MPa$ for the 3D printing group(p=0.035). The failure aspect showed mixed failure. As a results, metal cores fabricated by 3D printing method were clinically acceptable range.

Evaluation of Water Absorption Phenomena into the Photo-resist Dry Film for PCB Photo-lithography Process (PCB Photo-lithography 공정에 사용되는 Photo-resist인 Dry Film에 대한 물의 확산 침투 현상평가)

  • Lee, Choon Hee;Jeong, Giho;Shin, An Seob
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.593-598
    • /
    • 2013
  • In this study, we have evaluated the water absorption phenomenon of photoresist dry film, which is commonly used to build circuits on PCB (Printed Circuit Board) by photolithography, by using ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared). We have firstly observed significant change in fracture mode of dry film with respect to temperature and humidity, which we assumed the material transition from ductile to brittle. Secondly, we have established the process of absorption test for determining the diffusion coefficients of water into the dry film both with gravimeter and ATR-FTIR. We have successfully calculated the diffusion coefficients for each environmental conditions from the results which we achieved by gravimeter and ATR-FTIR. Compared to the gravimeter which is a conventional method for absorption test, the ATR-FTIR method in this study has been found to be very easy to use and have the same accuracy as gravimeter. Moreover, we are expecting to use the ATR-FTIR as an appropriate method to study the absorption phenomena related to any kinds of solvent and polymer system.