• Title/Summary/Keyword: Material fluxes

Search Result 65, Processing Time 0.028 seconds

GPU Based Feature Profile Simulation for Deep Contact Hole Etching in Fluorocarbon Plasma

  • Im, Yeon-Ho;Chang, Won-Seok;Choi, Kwang-Sung;Yu, Dong-Hun;Cho, Deog-Gyun;Yook, Yeong-Geun;Chun, Poo-Reum;Lee, Se-A;Kim, Jin-Tae;Kwon, Deuk-Chul;Yoon, Jung-Sik;Kim3, Dae-Woong;You, Shin-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.80-81
    • /
    • 2012
  • Recently, one of the critical issues in the etching processes of the nanoscale devices is to achieve ultra-high aspect ratio contact (UHARC) profile without anomalous behaviors such as sidewall bowing, and twisting profile. To achieve this goal, the fluorocarbon plasmas with major advantage of the sidewall passivation have been used commonly with numerous additives to obtain the ideal etch profiles. However, they still suffer from formidable challenges such as tight limits of sidewall bowing and controlling the randomly distorted features in nanoscale etching profile. Furthermore, the absence of the available plasma simulation tools has made it difficult to develop revolutionary technologies to overcome these process limitations, including novel plasma chemistries, and plasma sources. As an effort to address these issues, we performed a fluorocarbon surface kinetic modeling based on the experimental plasma diagnostic data for silicon dioxide etching process under inductively coupled C4F6/Ar/O2 plasmas. For this work, the SiO2 etch rates were investigated with bulk plasma diagnostics tools such as Langmuir probe, cutoff probe and Quadruple Mass Spectrometer (QMS). The surface chemistries of the etched samples were measured by X-ray Photoelectron Spectrometer. To measure plasma parameters, the self-cleaned RF Langmuir probe was used for polymer deposition environment on the probe tip and double-checked by the cutoff probe which was known to be a precise plasma diagnostic tool for the electron density measurement. In addition, neutral and ion fluxes from bulk plasma were monitored with appearance methods using QMS signal. Based on these experimental data, we proposed a phenomenological, and realistic two-layer surface reaction model of SiO2 etch process under the overlying polymer passivation layer, considering material balance of deposition and etching through steady-state fluorocarbon layer. The predicted surface reaction modeling results showed good agreement with the experimental data. With the above studies of plasma surface reaction, we have developed a 3D topography simulator using the multi-layer level set algorithm and new memory saving technique, which is suitable in 3D UHARC etch simulation. Ballistic transports of neutral and ion species inside feature profile was considered by deterministic and Monte Carlo methods, respectively. In case of ultra-high aspect ratio contact hole etching, it is already well-known that the huge computational burden is required for realistic consideration of these ballistic transports. To address this issue, the related computational codes were efficiently parallelized for GPU (Graphic Processing Unit) computing, so that the total computation time could be improved more than few hundred times compared to the serial version. Finally, the 3D topography simulator was integrated with ballistic transport module and etch reaction model. Realistic etch-profile simulations with consideration of the sidewall polymer passivation layer were demonstrated.

  • PDF

Environmental and Ecological Consequences of Submarine Groundwater Discharge in the Coastal Areas of the Korea Peninsula (한반도 연안 해역에서 해저 지하수 유출의 환경 생태학적 중요성)

  • KIM GUEBUEM;HWANG DONG-WOON;RYU JAE-WOONG;LEE YONG-WOO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.4
    • /
    • pp.204-212
    • /
    • 2005
  • Recognition has emerged that nutrient inputs from the submarine discharge of fresh, brackish, and marine groundwaters into the coastal ocean are comparable to the inputs via river discharge. The coastal areas of the Korea peninsula and adjacent seas exhibit particular importance in the role of submarine groundwater discharge (SGD), in terms of the magnitude of SGD and associated continental material fluxes. For example, in the southern sea of Korea, SGD transports excess nutrients into the coastal regions and thus appears to influence ecosystem changes such as the outbreak of red tides. Around volcanic island, Jeju, which is composed of high permeability rocks, the amount of SGD is higher by orders of magnitude relative to the eastern coast of North America where extensive SGD studies have been conducted. In particular, nutrient discharge through SGD exerts a significant control on coastal ecosystem changes and results in benthic eutrophication in semi-enclosed Bang-du bay, Jeju. In the entire area of the Yellow Sea, tile submarine discharge of brackish groundwater and associated nutrients are found to rival the river discharges into the Yellow Sea, including those through Yangtze River, Han River, etc. In the eastern coast of the Korea peninsula, SGD is significantly higher during summer than winter due to high hydraulic gradients and due to wide distribution of high permeability sandy zones, faults, and fractures. On the other hand, in the estuarine water, downstream construction of the dam in the Nakdong River, SGD was highest when the river discharge was lowest (but water level of the dam was highest). This suggests that even though there is no visible freshwater discharge into this estuary, the discharge of chemical species is significant through SGD. On the basis of the results obtained from the coastal areas of the Korea peninsula, SGD is considered to be an important pathway of continental contaminants influencing tidal-flat ecosystems, red tides, and coral ecology. Thus, future costal management should pay great attention to the impact of SGD on coastal pollution and eutrophication.

Is Nitrogen Uptake Rate by Phytoplankton below the Euphotic Zone in the Yellow Sea Considerable? (황해의 무광대에서 식물플랑크톤에 의한 질소 섭취율은 상당한가?)

  • Yang, Sung-Ryull;Shim, Jae-Hyung;Chung, Chang-Soo;Hong, Gi-Hoon;Pae, Se-Jin;Yang, Dong-Beom;Park, Myung-Gil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.2
    • /
    • pp.60-67
    • /
    • 2002
  • To determine whether nitrogen (N) uptake by phytoplankton below the euphotic zone in the Yellow Sea is considerable, we measured the uptake rates of nitrate and ammonium using $^{15}N$-labeled stable isotope $K^{15}NO_{3}$ and $^{15}NH_{4}Cl$, in May and November 1997 at total 10 stations. Depth-integrated uptake rates of nitrate and ammonium over the euphotic zone during this study ranged from 1.8 to 15.3 mg N $m^{-2}$ $d^{-1}$ and from 5.0 to 132.2 mg N $m^{-2}$ $d^{-1}$, respectively, and ammonium uptake predominated at 9 of 10 stations (1.9-19.4 fold). Depth-integrated uptake rates of nitrate and ammonium over the whole water column ranged from 2.9 to 22.0 mg N $m^{-2}$ $d^{-1}$ and from 15.7 to 175.5 mg N $m^{-2}$ $d^{-1}$, respectively. The significant proportion of whole water column N uptake was attributed to uptake by phytoplankton below the euphotic zone, ranging from 13.0 to 86.2% for nitrate and from 13.8 to 67.8% for ammonium, indicating that phytoplankton N uptake below the euphotic zone is at times considerable in the study area. The results suggest that when phytoplankton below the euphotic zone in the Yellow Sea are again entrained into the euphotic zone by a certain physical forcing such as turbulent mixing and the vertical movement of thermocline, these episodic events may significantly affect the material fluxes within the euphotic zone. Furthermore, the results suggest that a portion of regenerated production estimated from $^{15}N$-ammonium uptake should be included in new production estimates, which otherwise could be underestimated in the Yellow Sea.

In-situ Treatment for the Attenuation of Phosphorus Release from Sediments of Lakes (호소퇴적물로부터 인 용출 저감을 위한 In-situ 처리)

  • Kim, Seog-Ku;Lee, Mi-Kyung;Ahn, Jae-Hwan;Kang, Sung-Won;Kim, Young-Im
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.563-572
    • /
    • 2006
  • In order to propose optimum in-situ treatment for reducing phosphorous release from sediment of stationary lakes, a series of column tests were performed. The sediment used in experiment was very fine clay with a mean grain site $7.7{\phi}$ and high $C_{org}$ contents(2.4%). Phosphorous releases were evaluated in two ways : in lake water(with microbial effect) and in distilled water(without microbial effect). As in-situ capping material, sand and loess were used while Fe-Gypsum and $SiO_2$-Gypsum were used for in-situ chemical treatment. In case of lake water considering the effect of microorganism, phosphorous concentration rapidly decreased in the early stage of experiment but it was gradually increased after 10 days. Flux of phosphorous release for control was $3.0mg/m^2{\cdot}d$. Whereas, those for sand layer capping(5 cm) and loess layer capping(5 cm) were $2.5mg/m^2{\cdot}d\;and\;1.8mg/m^2{\cdot}d$, respectively because the latter two were not consolidated sufficiently. For Fe-gypsum and $SiO_2$-gypsum the fluxes were $1.4mg/m^2{\cdot}d$ which meant that reduction efficiency of phosphorous release was more than 40% higher than that of control. The case capping with complex layer was $1.0mg/m^2{\cdot}d$, which showed high reduction efficiency over 60%. The addition of gypsum($CaSO_4{\cdot}2H_2O$) into the sediment reduced release of Phosphorus from the sediments. Gypsum acted as a slow-releasing source of sulphate in sediment, which enhanced the activity of SRB(sulfate reducing bacteria) and improved the overall mineralization rate of organic matter.

Assessment of Methane Production Rate Based on Factors of Contaminated Sediments (오염퇴적물의 주요 영향인자에 따른 메탄발생 생성률 평가)

  • Dong Hyun Kim;Hyung Jun Park;Young Jun Bang;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.45-59
    • /
    • 2023
  • The global focus on mitigating climate change has traditionally centered on carbon dioxide, but recent attention has shifted towards methane as a crucial factor in climate change adaptation. Natural settings, particularly aquatic environments such as wetlands, reservoirs, and lakes, play a significant role as sources of greenhouse gases. The accumulation of organic contaminants on the lake and reservoir beds can lead to the microbial decomposition of sedimentary material, generating greenhouse gases, notably methane, under anaerobic conditions. The escalation of methane emissions in freshwater is attributed to the growing impact of non-point sources, alterations in water bodies for diverse purposes, and the introduction of structures such as river crossings that disrupt natural flow patterns. Furthermore, the effects of climate change, including rising water temperatures and ensuing hydrological and water quality challenges, contribute to an acceleration in methane emissions into the atmosphere. Methane emissions occur through various pathways, with ebullition fluxes-where methane bubbles are formed and released from bed sediments-recognized as a major mechanism. This study employs Biochemical Methane Potential (BMP) tests to analyze and quantify the factors influencing methane gas emissions. Methane production rates are measured under diverse conditions, including temperature, substrate type (glucose), shear velocity, and sediment properties. Additionally, numerical simulations are conducted to analyze the relationship between fluid shear stress on the sand bed and methane ebullition rates. The findings reveal that biochemical factors significantly influence methane production, whereas shear velocity primarily affects methane ebullition. Sediment properties are identified as influential factors impacting both methane production and ebullition. Overall, this study establishes empirical relationships between bubble dynamics, the Weber number, and methane emissions, presenting a formula to estimate methane ebullition flux. Future research, incorporating specific conditions such as water depth, effective shear stress beneath the sediment's tensile strength, and organic matter, is expected to contribute to the development of biogeochemical and hydro-environmental impact assessment methods suitable for in-situ applications.