• Title/Summary/Keyword: Material flow analysis

Search Result 1,075, Processing Time 0.028 seconds

알루미늄 합금을 이용한 후방압출에 의한 캔 성형시 성형 조건이 표면확장과 접촉 압력에 미치는 영향 (Influences of Process Conditions on the Surface Expansion and Contact Pressure in Backward Can Extrusion of Al Alloys)

  • 민경호;서정민;구훈서;비스라;탁상현;이인철;황병복
    • 소성∙가공
    • /
    • 제16권7호
    • /
    • pp.521-529
    • /
    • 2007
  • This paper is concerned with the analysis on the surface expansion of AA 2024 and AA 1100 aluminum alloys in backward extrusion process. Due to heavy surface expansion appeared usually in the backward can extrusion process, the tribological conditions along the interface between the material and the punch land are very severe. In the present study, the surface expansion is analyzed especially under various process conditions. The main goal of this study is to investigate the influence of degree of reduction in height, geometries of punch nose, friction and hardening characteristics of different aluminum alloys on the material flow and thus on the surface expansion on the working material. Two different materials are selected for investigation as model materials and they are AA 2024 and AA 1100 aluminum alloys. The geometrical parameters employed in analysis include punch corner radius and punch nose angle. The geometry of punch follows basically the recommendation of ICFG and some variations of punch geometry are adopted to obtain quantitative information on the effect of geometrical parameters on material flow. Extensive simulation has been conducted by applying the rigid-plastic finite element method to the backward can extrusion process under different geometrical, material, and interface conditions. The simulation results are summarized in terms of surface expansion at different reduction in height, deformation patterns including pressure distributions along the interface between workpiece and punch, comparison of surface expansion between two model materials, geometrical and interfacial parametric effects on surface expansion, and load-stroke relationships.

고분자 수지를 이용한 자동차 에어컨용 압축기의 씰에 관한 연구 (A Study on Compressor Seal for Automotive Air-conditioner using Polymer Resin)

  • 정태형;하영욱
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.22-27
    • /
    • 2002
  • The existing compressor steel seal used in automotive air-conditioner has the problem of oil leakage and the deterioration in shielding performance, due to the abrasion and the corrosion of the material. A new type of polymer resin seal is studied in the research. The polymer resin seal has the characteristics of high anti-abrasiveness and anti-corrosiveness, which can overcome the deflects of the steel seal. In addition, the seal needs lower manufacturing cost and is appropriate to mass production, because it is made by the injection molding method requiring no mechanical processing. The profile generation program for seal mold has been developed using the gradient method, and the molding characteristics of the seal have analyzed through the flow analysis and the warpage analysis. The program has been verified by comparing the analysis results with the measured data of the test product. The research might be said to provide the basic method to produce the polymer resin seals with various types and dimensions.

  • PDF

고분자 수지를 이용한 자동차 에어컨용 압축기의 씰에 관한 연구 (A Study on Compressor Seal for Automotive Air-conditioner using Polymer Resin)

  • 정태형;하영욱
    • 한국공작기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.81-87
    • /
    • 2002
  • The existing compressor steel seal used in automotive air-conditioner has the problem of oil leakage and deterioration in shielding performance, due to the abrasion and corrosion of the material. A new type of polymer resin seal studied in this research has the characteristics of high anti-abrasiveness and anti-corrosiveness, which can oversome the defects of the steel seal. In addition, the seal needs lower manufacturing cost and is appropriate to mass production, because it is made by the injection molding method requiring no mechanical processing. The profile generation program for seal mold has been developed using the gradient method, and the molding characteristics of the seal have analyzed through the flow analysis and the warpage analysis. The program has been verified by comparing the analysis results with the measured data of the test product. The research might be said to provide the basic method to produce the polymer resin seals with various types and dimensions.

Coin Drop Simulation based on Smoothed Particles Hydrodynamics

  • Kang, Han-bin;Pack, In-seok;Song, Ju-han;Lee, Dong-ug;Park, Min-hyeok;Lee, Seok-soon
    • 항공우주시스템공학회지
    • /
    • 제7권1호
    • /
    • pp.19-25
    • /
    • 2013
  • Smoothed Particle Hydrodynamics(SPH) method uses a grid of historical analysis and is not Lagrangian particles using the grid method. The Navier-Stokes equations were used to solve the viscous flow of the non-compressed. In this study, the numerical analysis of the three-dimensional Coin Drop Simulation using SPH method was performed, and the analysis results are compared with experimental results, and a similar behavior can be seen. The commercial program used was Abaqus/Explicit. SPH method to reduce the error by comparing the existing flow analysis or interpretation of the continuing research is needed in the future. That will enable real-time analysis of material obtained as a result of these numerical simulations similar to the actual flow phenomena, depending on the development of computer graphics technology to show visually. As a result, this method can be applied to the analysis fluid - structure interaction problems in a variety of fields.

링압축시험에서 역해석을 이용한 유동응력과 마찰상수 결정법 (A method of determining flow stress and friction factor using an inverse analaysis in ring compression test)

  • 최영;김호관;조해용;김병민;최재찬
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.483-492
    • /
    • 1998
  • An inverse analysis been applied to obtain the flow stress of the material. In this method, a ring-shaped specimen is compressed between two flat tools. This procedure employs, as the object function of inverse analysis, the balance of measured loads and reaction forces calculated by using rigid-plastic finite element method. The balance is explicit scalar function of flow stress which is a function of some unknown constants. For minimizing the balance, Newton-Raphon scheme is used. The friction factor, m, between flat tools and the specimen is determined by using friction area-divided method. The proposed method allows an accurate identification by avoiding the usual assumptions made in order to convert experimental measures into stress-strain relation. In this paper, the proposed method is numerically tested. A commercial pure aluminum was selected, as an example, to apply the method and the results are compared with stress-strain relation obtained by experiments.

변형가시화법을 이용한 열간 축대칭 평금형 압출의 실험적 해석 (An Experimental Analysis for Axisymetric Hot Extrusion Through Square Dies Using Visioplasticity Method)

  • 엄태복;한철호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 춘계학술대회논문집
    • /
    • pp.107-113
    • /
    • 1995
  • To investigate the behavior of platic deformation inaxisymmetric hot extrusion through square dies, the physical modelling with the plasticine as a model material is carried out at the room temperature. Some mechanical properties of the model material are determined by compression and ring compression tests. Visioplasticity method using experimetal grid distortion is introduced to anlayze the plastic flow, strain rate and strain distribution.

  • PDF

고속 ATM 라우터의 성능 분석에 관한 연구 (A Study on the Performance Analysis of a High-Speed ATM Router)

  • 조성국
    • 한국컴퓨터정보학회논문지
    • /
    • 제6권1호
    • /
    • pp.74-81
    • /
    • 2001
  • 본 논문에서는 ATM 스위치를 사용한 고속 라우터의 구조를 고찰하고 시뮬레이션을 통하여 고속ATM 라우터의 성능을 분석하였다. ATM 스위치를 사용한 고속 ATM 라우터는 플로우(flow)로 정의된 패킷에 대하여 라우터의 처리과정을 생략하고 ATM 스위치를 사용하여 IP 패킷을 처리하기 때문에 라우터의 부하를 줄일 수 있다. 성능 분석을 위한 시뮬레이션에서는 고속 ATM 라우터의 성능 파리미터인 라우팅 시간(routing time: RT), 플로우 테이블 크기 (flow table size : FS), 플로우 리스트 유지시간(flow live time: FT)과 입력 회선 효율을 변화시키면서 라우터의 버퍼 크기를 고찰하였다. 본 논문의 결과는 네트워크를 Upgrade 하거나 ATM 스위치를 이용하여 고속 ATM 라우터를 구현할 때 장비의 적합성을 분석할 수 있는 자료로 사용될 수 있다.

  • PDF

저고상율 소재의 유동 및 응고현상을 고려한 레올로지 성형공정해석 (Process Analysis for Rheology Forming Considering Flow and Solidification Phenomena in Lower Solid Fraction)

  • 정영진;조호상;강충길
    • 한국정밀공학회지
    • /
    • 제18권9호
    • /
    • pp.156-164
    • /
    • 2001
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum alloy has been studied. Two-phase fluid flow model to investigate the velocity field and temperature distribution is proposed. The proposed mathematical model is applied to the die shape of the two types. To calculate the velocity and temperature fields during rheology forming process, the earth governing equation correspondent to the liquid and solid region are adapted. Therefore, each numerical models considering the solid and liquid region existing within the semi-solid material have been developed to predict the deflect of rheology forming gnarls. The Arbitrary Boundary Maker And Cell (ABMAC) method is employed to solve the two-phase flow model of the Navier-Stokes equation. Theoretical model on the basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on the liquid and solid viscosity. The liquid viscosity is pure liquid state value, however solid viscosity is considered as a function of the shear rate, solid fraction and power law curves.

  • PDF

CFD를 이용한 분지관.협착관의 비뉴턴 유체 해석 (The Numerical Analysis of Non-Newtonian Flow through Branched and Stenotic Tube)

  • 황도연;기민철;한병윤;박형구
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.385-388
    • /
    • 2008
  • The objective of this paper is simulating blood flow through the branched and stenotic tube numerically. SC-Tetra, which is one of the commercial code using FVM method, was utilized for this analysis. The flow is assumed as an incompressible laminar flow with the additional condition of non-Newtonian fluid. As the constitutive equation for the fluid viscosity, the following models were solved with governing equations ; Cross Model, Modified Cross Model, Carreau Model and Carreau-Yasuda Model. Final goal was achieved to get analytic data about shear stress, at specific points, changing the geometry with various factors like the bifurcation angle, diameter of the branches, the ratio of stenosis, and etc. The material property of blood was referred from the related papers. Furthermore, to verify results they were compared with those of the published papers. There were some discrepancies based on the different solver and the different data post-processing method. However, many parameters like the location of low shear stress, which arised from bifurcation or stenosis, and the tendency of various factors were found to be very similar.

  • PDF

수치해석기법을 이용한 고온태양열 흡수기의 열성능 분석 (Computational Heat Transfer Analysis of High Temperature Solar Receiver)

  • 김태준;이주한;한귀영;강용혁;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제29권4호
    • /
    • pp.22-27
    • /
    • 2009
  • This study focus on verification of the thermal efficiency of volumetric receiver with 5k Wth Dish-type solar thermal system. Spiral flow path shaped on receiver and working fluid(steam) flow along with this flow path. Porous material for radiation-thermal conversion used in former researches are substituted with the stainless steel wall installed along the spiral flow path. Numerical analysis for the flow path and temperature distributions are carried out. Numerical results are compared with experimental data. Using the numerical model, the heat transfer characteristics of spiral type receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.