• Title/Summary/Keyword: Material dispersion

검색결과 769건 처리시간 0.026초

계면활성제 흡착 및 열처리를 이용한 실리카 에어로겔의 표면 개질 (Surface modification of silica aerogel by surfactant adsorption and heat treatment methods)

  • 김남이;김성우
    • 한국응용과학기술학회지
    • /
    • 제27권3호
    • /
    • pp.282-289
    • /
    • 2010
  • In preparation of silica aerogel-based hybrid coating materials, the combination of hydrophobic aerogel with organic polar binder material is shown to be very limited due to dissimilar surface property between two materials. Accordingly, the surface modification of the aerogel would be required to obtain compatibilized hybrid coating sols with homogeneous dispersion. In this study, the surface of silica aerogel particles was modified by using both surfactant adsorption and heat treatment methods. Four types of surfactants with different molecular weights and HLB values were used to examine the effect of chain length and hydrophilicity. The surface property of the modified aerogel was evaluated in terms of visible observation for aerogel dispersion in water, water contact angle measurement, and FT-IR analysis. In surface modification using surfactants, the effects of surfactant type and content, and mixing time as process parameter on the degree of hydrophilicity for the modified aerogel. In addition, the temperature condition in modification process via heat treatment was revealed to be significant factor to prepare aerogel with highly hydrophilic property.

Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs

  • Farokhian, Ahmad;Kolahchi, Reza
    • Structural Engineering and Mechanics
    • /
    • 제73권5호
    • /
    • pp.555-563
    • /
    • 2020
  • The objective of present paper is assessment of dynamic buckling behavior of an embedded sandwich microplates in thermal environment in which the layers are reinforced through functionally graded carbon nanotubes (FG-CNTs). Therefore, mixture rule is taken into consideration for obtaining effective material characteristics. In order to model this structure much more realistic, Kelvin-Voigt model is presumed and the sandwich structure is rested on visco-Pasternak medium. Exponential shear deformation theory (ESDT) in addition to Eringen's nonlocal theory are utilized to obtain motion equations. Further, differential cubature method (DCM) as well as Bolotin's procedure are used to solve governing equations and achieve dynamic instability region (DIR) related to sandwich structure. Different parameters focusing on volume percent of CNTs, dispersion kinds of CNTs, thermal environment, small scale effect and structural damping and their influences upon the dynamic behavior of sandwich structure are investigated. So as to indicate the accuracy of applied theories as well as methods, the results are collated with another paper. According to results, presence of CNTs and their dispersion kind can alter system's dynamic response as well.

자기 조립 반응에 의한 그래핀이 코팅된 알루미늄 입자의 합성 방법 (Synthesis of Graphene Coated Aluminum Powders by Self-assemble Reaction)

  • 황진욱;탁우성;남상용;김우식
    • 한국분말재료학회지
    • /
    • 제26권5호
    • /
    • pp.383-388
    • /
    • 2019
  • To improve the mechanical properties of aluminum, graphene has been used as a reinforcing material, yielding graphene-reinforced aluminum matrix composites (GRAMCs). Dispersion of graphene materials is an important factor that affects the properties of GRAMCs, which are mainly manufactured by mechanical mixing methods such as ball milling. However, the use of only mechanical mixing process is limited to achieve homogeneous dispersion of graphene. To overcome this problem, in this study, we have prepared composite materials by coating aluminum particles with graphene by a self-assembly reaction using poly vinylalcohol and ethylene diamine as coupling agents. The scanning electron microscopy and Fourier-transform infrared spectroscopy results confirm the coating of graphene on the Al surface. Bulk density of the sintered composites by spark plasma sintering achieved a relative density of over 99% up to 0.5 wt.% graphene oxide content.

Development of a radiological emergency evacuation model using agent-based modeling

  • Hwang, Yujeong;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2195-2206
    • /
    • 2021
  • In order to mitigate the damage caused by accidents in nuclear power plants (NPPs), evacuation strategies are usually managed on the basis of off-site effects such as the diffusion of radioactive materials and evacuee traffic simulations. However, the interactive behavior between evacuees and the accident environment has a significant effect on the consequential gap. Agent-based modeling (ABM) is a method that can control and observe such interactions by establishing agents (i.e., the evacuees) and patches (i.e., the accident environments). In this paper, a radiological emergency evacuation model is constructed to realistically check the effectiveness of an evacuation strategy using NetLogo, an ABM toolbox. Geographic layers such as radiation sources, roads, buildings, and shelters were downloaded from an official geographic information system (GIS) of Korea, and were modified into respective patches. The dispersion model adopted from the puff equation was also modified to fit the patches on the geographic layer. The evacuees were defined as vehicle agents and a traffic model was implemented by combining the shortest path search (determined by an A * algorithm) and a traffic flow model incorporated in the Nagel-Schreckenberg cellular automata model. To evaluate the radiological harm to the evacuees due to the spread of radioactive materials, a simple exposure model was established to calculate the overlap fraction between the agents and the dispersion patches. This paper aims to demonstrate that the potential of ABM can handle disaster evacuation strategies more realistically than previous approaches.

Cold Compaction Behavior of Nano and Micro Aluminum Powder under High Pressure

  • Kim, Dasom;Park, Kwangjae;Kim, Kyungju;Cho, Seungchan;Hirayama, Yusuke;Takagi, Kenta;Kwon, Hansang
    • Composites Research
    • /
    • 제32권3호
    • /
    • pp.141-147
    • /
    • 2019
  • In this study, micro-sized and nano-sized pure aluminum (Al) powders were compressed by unidirectional pressure at room temperature. Although neither type of Al bulk was heated, they had a high relative density and improved mechanical properties. The microstructural analysis showed a difference in the process of densification according to particle size, and the mechanical properties were measured by the Vickers hardness test and the nano indentation test. The Vickers hardness of micro Al and nano Al fabricated in this study was five to eight times that of ordinary Al. The grain refinement effect was considered to be one of the strengthening factors, and the Hall-Petch equation was introduced to analyze the improved hardness caused by grain size reduction. In addition, the effect of particle size and dispersion of aluminum oxide in the bulk were additionally considered. Based on these results, the present study facilitates the examination of the effect of particle size on the mechanical properties of compacted bulk fabricated by the powder metallurgy method and suggests the possible way to improve the mechanical properties of nano-crystalline powders.

The effect of cooling rates on carbide precipitate and microstructure of 9CR-1MO oxide dispersion strengthened(ODS) steel

  • Jang, Ki-Nam;Kim, Tae-Kyu;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.249-256
    • /
    • 2019
  • The 9Cr-1Mo ferritic-martensitic ODS steel is a promising structural material for the next generation nuclear power plants including fast reactors for application in reactor vessels and nuclear fuel. The ODS steel was cooled down by furnace cooling, air cooling, oil quenching and water quenching, respectively, after normalizing it at $1150^{\circ}C$ for 1 h and then tempering at $780^{\circ}C$ for 1 h. It is found that grain size, a relative portion of ferrite and martensite, martensitic lath configuration, behaviors of carbide precipitates, and hardness of the ODS steel are strongly dependent on a cooling rate. The grain size and martensitic lath width become smaller with the increase in a cooling rate. The carbides were precipitated at the grain boundaries formed between the ferrite and martensite phases and at the martensitic lath interfaces. In addition, the carbide precipitates become smaller and more widely dispersed with the increase in a cooling rate, resulting in that the faster cooling rate generated the higher hardness of the ODS steel.

Graft Polymer를 이용한 수계 세라믹 잉크의 합성 및 프린팅 특성평가 (Synthesis and Printability of Aqueous Ceramic Ink with Graft Polymer)

  • 이지현;황해진;김진호;황광택;한규성
    • 한국재료학회지
    • /
    • 제29권10호
    • /
    • pp.639-646
    • /
    • 2019
  • Ink-jet printing is a manufacturing process technology that directly prints a digitalized design pattern onto a substrate using a fine ink jetting system. In this study, environmentally friendly yellow aqueous ceramic ink is synthesized by mixture of distilled water, yellow ceramic pigment and additives for ink-jet printing. The graft polymer, which combines electrostatic repulsion and steric hindrance mechanism, is used as a surfactant for dispersion stability of aqueous ceramic ink. Synthesized ceramic ink with graft polymer surfactant shows better dispersion stability than did ceramic ink with PAA surfactant; synthesized ink also shows desirable ink-jet printability with the formation of a single ink droplet during printability test. Finally, ceramic ink printed on glass substrate and ceramic ink with graft polymer surfactant shows a high contact angle without surface treatment on glass substrate. Consequently, it is confirmed that the ceramic ink with graft polymer surfactant can achieve high printing resolution without additional surface treatment process.

Effect of Surface Modifying Agents Towards Enhancing Performance of Waste Gypsum Based PBAT Composite

  • Kong, Tae Woong;Kim, In Tae;Sinha, Tridib Kumar;Moon, Junho;Kim, Dong Ho;Kim, Inseon;Na, Kwangyong;Kim, Min-Woo;Kim, Hye-Lin;Hyeong, Taegyeong;Oh, Jeong Seok
    • Elastomers and Composites
    • /
    • 제55권4호
    • /
    • pp.347-353
    • /
    • 2020
  • Stearic acid (SA), polyethylene glycol (PEG), and malic acid (MA) have been used to modify the surface of waste gypsum to develop corresponding poly (butylene adipate-co-terephthalate) (PBAT) composites. According to the mechanical properties, MA-treated gypsum (MA-gypsum) showed the best performance, whereas SA-gypsum showed the worst performance. In contrast to SA and PEG (having -COOH and -OH as polar functional groups, respectively), the presence of both -OH and -COOH in MA is responsible for the superior surface treatment of gypsum and its better dispersion in the polymer matrix (as revealed by FE-SEM analyses). The presence of long aliphatic chain in SA is supposed to inhibit the dispersion of SA-gypsum. Further, the performance of MA-gypsum/PBAT was enhanced by adding polylactic acid (PLA). The maximum optimized contents of MA-gypsum and PLA are 20 and 7.5 wt% for developing a high-performance PBAT composite.

Elastic stability of functionally graded graphene reinforced porous nanocomposite beams using two variables shear deformation

  • Fortas, Lahcene;Messai, Abderraouf;Merzouki, Tarek;Houari, Mohammed Sid Ahmed
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.31-54
    • /
    • 2022
  • This paper is concerned with the buckling behavior of functionally graded graphene reinforced porous nanocomposite beams based on the finite element method (FEM) using two variables trigonometric shear deformation theory. Both Young's modulus and material density of the FGP beam element are simultaneously considered as grading through the thickness of the beam. The finite element approach is developed using a nonlocal strain gradient theory. The governing equations derived here are solved introducing a 3-nodes beam element, and then the critical buckling load is calculated with different porosity distributions and GPL dispersion patterns. After a convergence and validation study to verify the accuracy of the present model, a comprehensive parametric study is carried out, with a particular focus on the effects of weight fraction, distribution pattern of GPL reinforcements on the Buckling behavior of the nanocomposite beam. The effects of various structural parameters such as the dispersion patterns for the graphene and porosity, thickness ratio, boundary conditions, and nonlocal and strain gradient parameters are brought out. The results indicate that porosity distribution and GPL pattern have significant effects on the response of the nanocomposite beams, and the results allows to identify the most effective way to achieve improved buckling behavior of the porous nanocomposite beam.

Guided waves of porous FG nanoplates with four edges clamped

  • Zhao, Jing-Lei;She, Gui-Lin;Wu, Fei;Yuan, Shu-Jin;Bai, Ru-Qing;Pu, Hua-Yan;Wang, Shilong;Luo, Jun
    • Advances in nano research
    • /
    • 제13권5호
    • /
    • pp.465-474
    • /
    • 2022
  • Based on the nonlocal strain gradient (NSG) theory and considering the influence of moment of inertia, the governing equations of motion of porous functionally graded (FG) nanoplates with four edges clamped are established; The Galerkin method is applied to eliminate the spatial variables of the partial differential equation, and the partial differential governing equation is transformed into an ordinary differential equation with time variables. By satisfying the boundary conditions and solving the characteristic equation, the dispersion relations of the porous FG strain gradient nanoplates with four edges fixed are obtained. It is found that when the wave number is very small, the influences of nonlocal parameters and strain gradient parameters on the dispersion relation is very small. However, when the wave number is large, it has a great influence on the group velocity and phase velocity. The nonlocal parameter represents the effect of stiffness softening, and the strain gradient parameter represents the effect of stiffness strengthening. In addition, we also study the influence of power law index parameter and porosity on guided wave propagation.