• 제목/요약/키워드: Material Uncertainty

검색결과 341건 처리시간 0.044초

물성치 변동성에 의한 불확실성이 고려된 국내 필댐 사력부를 위한 전단파 속도 주상도 모델 (Determination of Shear Wave Velocity Profile Model Considering Uncertainty Caused by Spatial Variation of Material Property in Rockfill Zone of Fill Dam)

  • 박형춘
    • 한국지반공학회논문집
    • /
    • 제35권2호
    • /
    • pp.29-36
    • /
    • 2019
  • 본 연구에서는 필댐 사력부 전단파 속도 주상도 결정시 물성치 변동성에 의해 발생 가능한 불확실성을 평가하고, 평가된 불확실성이 반영된 국내 필댐 사력부를 위한 전단파 속도 주상도 모델을 제안하였다. 이를 위하여 평가된 불확실성을 바탕으로 국내 필댐 사력부에 존재 가능한 깊이-전단파 속도 곡선 400개를 결정하고, 이에 대한 통계분석을 통하여 깊이별 전단파 속도 상한과 하한 곡선을 결정하였다. 결정된 곡선을 바탕으로 Burger 모델 형태의 깊이별 전단파 속도 상한과 하한 주상도 모델을 결정하였다. 결정된 모델은 국내에서 많이 사용되고 있는 Sawada-Takahashi 모델과 비교하였다.

반응표면방법론과 피어슨 시스템을 이용한 불확실성하의 확률적 설계 (Probabilistic Design under Uncertainty using Response Surface Methodology and Pearson System)

  • 백석흠;조석수;주원식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.275-282
    • /
    • 2006
  • System algorithms estimated by deterministic input may occur the error between predicted and actual output. Especially, actual system can't predict the exact outputs due to uncertainty and tolernce of input parameters. A single output to a set of inputs has a limited value without the variation. Hence, we should consider various scatters caused by the load assessment, material characteristics, stress analysis and manufacturing methods in order to perform the robust design or etimate the reliability of structure. The system design with uncertainty should perform the probabilistic structural optimization with the statistical response and the reliability. This method calculated the probability distributions of the characteristics such as stress by combining stress analysis, response surface methodology and Monte Carlo simulation and got the probabilistic sensitivity. The sensitivity of structural response with respect to in constant design variables was estimated by fracture probability. Therefore, this paper proposed the probabilistic reliability design method for fracture of uncorved freight end beam and the design criteria by fracture probability.

  • PDF

Probabilistic sensitivity of base-isolated buildings to uncertainties

  • Gazi, Hatice;Alhan, Cenk
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.441-457
    • /
    • 2018
  • Characteristic parameter values of seismic isolators deviate from their nominal design values due to uncertainties and/or errors in their material properties and element dimensions, etc. Deviations may increase over service life due to environmental effects and service conditions. For accurate evaluation of the seismic safety level, all such effects, which would result in deviations in the structural response, need to be taken into account. In this study, the sensitivity of the probability of failure of the structures equipped with nonlinear base isolation systems to the uncertainties in various isolation system characteristic parameters is investigated in terms of various isolation system and superstructure response parameters in the context of a realistic three-dimensional base-isolated building model via Monte Carlo Simulations. The inherent record-to-record variability nature of the earthquake ground motions is also taken into account by carrying out analyses for a large number of ground motion records which are classified as those with and without forward-directivity effects. Two levels of nominal isolation periods each with three different levels of uncertainty are considered. Comparative plots of cumulative distribution functions and related statistical evaluation presented here portray the potential extent of the deviation of the structural response parameters resulting from the uncertainties and the uncertainty levels considered, which is expected to be useful for practicing engineers in evaluating isolator test results for their projects.

감쇠비 불확실성을 고려한 유연구조물의 H 제어기 설계 (H Controller Design of Flexible Space Structure with the Uncertainty of Damping Ratio)

  • 채장수;박태원
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.602-608
    • /
    • 2002
  • The flexible structure like solar array and antenna in spacecraft shows very sensitive responses to the inner or outer disturbance and noise. And the spacecraft becomes more complex and larger as it has various mission and role. But since the spacecraft need to have the limited mass, the thin and light material should be selected and this necessity induces the decrease d natural frequency and structural stiffness. It reduces the ability of adapting to the disturbance and induces the structural unstability. Certainly, the disturbance does not only make the structural unstability, but also give the bad effect to the precise attitude control. So it is necessary to control the vibration in the space. In this paper, the flexible structure control modeling with piezo sensor and piezo actuator is developed. The model uncertainty of damping ratio is overcome by robust control. The system equation is induced by the finite element method.

Multiple failure criteria-based fragility curves for structures equipped with SATMDs

  • Bakhshinezhad, Sina;Mohebbi, Mohtasham
    • Earthquakes and Structures
    • /
    • 제17권5호
    • /
    • pp.463-475
    • /
    • 2019
  • In this paper, a procedure to develop fragility curves of structures equipped with semi-active tuned mass dampers (SATMDs) considering multiple failure criteria has been presented while accounting for the uncertainties of the input excitation, structure and control device parameters. In this procedure, Latin hypercube sampling (LHS) method has been employed to generate 30 random SATMD-structure systems and nonlinear incremental dynamic analysis (IDA) has been conducted under 20 earthquakes to determine the structural responses, where failure probabilities in each intensity level have been evaluated using Monte Carlo simulation (MCS) method. For numerical analysis, an eight-story nonlinear shear building frame with bilinear hysteresis material behavior has been used. Fragility curves for the structure equipped with optimal SATMDs have been developed considering single and multiple failure criteria for different performance levels and compared with that of uncontrolled structure as well as structure controlled using passive tuned mass damper (TMD). Numerical analysis has shown the capability of SATMDs in significant enhancement of the seismic fragility of the nonlinear structure. Also, considering multiple failure criteria has led to increasing the fragility of the structure. Moreover, it is observed that the influence of the uncertainty of input excitation with respect to the other uncertainties is considerable.

Assessment of DVC measurement uncertainty on GFRPs with various fiber architectures

  • Bartulovic, Ante;Tomicevic, Zvonimir;Bubalo, Ante;Hild, Francois
    • Coupled systems mechanics
    • /
    • 제11권1호
    • /
    • pp.15-32
    • /
    • 2022
  • The comprehensive understanding of the fiber reinforced polymer behavior requires the use of advanced non-destructive testing methods due to its heterogeneous microstructure and anisotropic mechanical proprieties. In addition, the material response under load is strongly associated with manufacturing defects (e.g., voids, inclusions, fiber misalignment, debonds, improper cure and delamination). Such imperfections and microstructures induce various damage mechanisms arising at different scales before macrocracks are formed. The origin of damage phenomena can only be fully understood with the access to underlying microstructural features. This makes X-ray Computed Tomography an appropriate imaging tool to capture changes in the bulk of fibrous materials. Moreover, Digital Volume Correlation (DVC) can be used to measure kinematic fields induced by various loading histories. The correlation technique relies on image contrast induced by microstructures. Fibrous composites can be reinforced by different fiber architectures that may lead to poor natural contrast. Hence, a priori analyses need to be performed to assess the corresponding DVC measurement uncertainties. This study aimed to evaluate measurement resolutions of global and regularized DVC for glass fiber reinforced polymers with different fiber architectures. The measurement uncertainties were evaluated with respect to element size and regularization lengths. Even though FE-based DVC could not reach the recommended displacement uncertainty with low spatial resolution, regularized DVC enabled for the use of fine meshes when applying appropriate regularization.

알루미늄 합금 제조공정에서의 선형계획모델 기반 재활용 원재료 혼합 비율 결정 알고리즘 (A Linear Programming-Based Algorithm for Raw Recycled Material Mixtures in the Aluminum Alloy Fabrication Process)

  • 강민주;김지훈;송경진;변유진;김재곤
    • 산업경영시스템학회지
    • /
    • 제47권2호
    • /
    • pp.40-47
    • /
    • 2024
  • As environmental concerns escalate, the increase in recycling of aluminum scrap is notable within the aluminum alloy production sector. Precise control of essential components such as Al, Cu, and Si is crucial in aluminum alloy production. However, recycled metal products comprise various metal components, leading to inherent uncertainty in component concentrations. Thus, meticulous determination of input quantities of recycled metal products is necessary to adjust the composition ratio of components. This study proposes a stable input determination heuristic algorithm considering the uncertainty arising from utilizing recycled metal products. The objective is to minimize total costs while satisfying the desired component ratio in aluminum manufacturing processes. The proposed algorithm is designed to handle increased complexity due to introduced uncertainty. Validation of the proposed heuristic algorithm's effectiveness is conducted by comparing its performance with an algorithm mimicking the input determination method used in the field. The proposed heuristic algorithm demonstrates superior results compared to the field-mimicking algorithm and is anticipated to serve as a useful tool for decision-making in realistic scenarios.

고무의 피로 수명 예측을 위한 찢김에너지 수식화 (Estimation of Tearing Energy for Fatigue Life Prediction of Rubber Material)

  • 김호;김헌영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.172-177
    • /
    • 2004
  • Fatigue life prediction is based on fracture mechanics and database which is established from experimental method. Rubber material also uses the same way for fatigue life prediction. But the absence of standardization of rubber material, various way of composition by each rubber company and uncertainty of fracture criterion makes the design of fatigue life by experimental method almost impossible. Tearing energy which has its origin in energy release rate is evaluated as fracture criterion of rubber material and the applicability of fatigue life prediction method are considered. The system of measuring tearing energy using the principal of virtual crack extension method and fatigue life prediction by the minimum number of experiments are proposed.

  • PDF

물성치의 불확실성을 고려한 자유단이 있는 복합재료 적층평판의 최적화 (Layup Optimization of Composite Laminates with Free Edge Considering Bounded Uncertainty)

  • 조맹효;이승윤
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.155-158
    • /
    • 2001
  • The layup optimization by genetic algorithm (GA) for the strength of laminated composites with free-edge is presented. For the calculation of interlaminar stresses of composite laminates with free edges, extended Kantorovich method is applied. In the formulation of GA, repair strategy is adopted for the satisfaction of given constraints. In order to consider the bounded uncertainty of material properties, convex modeling is used. Results of GA optimization with scattered properties are compared with those of optimization with nominal properties. The GA combined with convex modeling can work as a practical tool for light weight design of laminated composite structures since uncertainties are always encountered in composite materials.

  • PDF

불연속면의 영향을 고려한 암반동굴의 확률유한요소해석 (Stochastic Finite Element Analysis for Rock Caverns Considering the Effect of Discontinuities)

  • 최규섭;황신일;이경진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.95-102
    • /
    • 1996
  • In this study, a stochastic finite element model is proposed with a view to consider the uncertainty of physical properties of discontinuous rock mass in the analysis of structural behavior on underground caverns. In so doing, the LHS(Latin Hypercube sampling) technique has been applied to make up weak points of the Crude Monte Carlo technique. Concerning the effect of discontinuities, a joint finite element model is used that is known to be superior in explaining faults, cleavage, things of that nature. To reflect the uncertainty of material properties, the variables such as the the elastic modulus, the poisson's ratio, the joint shear stiffness, and the joint normal stiffness have been used, all of which can be applicable through normal distribution, log-normal distribution, and rectangulary uniform distribution. The validity of the newly developed computer program has been confirmed in terms of verification examples. And, the applicability of the program has been tested in terms of the analysis of the circular cavern in discontinuous rock mass.

  • PDF