• Title/Summary/Keyword: Material Removal Model

Search Result 142, Processing Time 0.02 seconds

Electrochemical Characterization of Anti-Corrosion Film Coated Metal Conditioner Surfaces for Tungsten CMP Applications (텅스텐 화학적-기계적 연마 공정에서 부식방지막이 증착된 금속 컨디셔너 표면의 전기화학적 특성평가)

  • Cho, Byoung-Jun;Kwon, Tae-Young;Kim, Hyuk-Min;Venkatesh, Prasanna;Park, Moon-Seok;Park, Jin-Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • Chemical Mechanical Planarization (CMP) is a polishing process used in the microelectronic fabrication industries to achieve a globally planar wafer surface for the manufacturing of integrated circuits. Pad conditioning plays an important role in the CMP process to maintain a material removal rate (MRR) and its uniformity. For metal CMP process, highly acidic slurry containing strong oxidizer is being used. It would affect the conditioner surface which normally made of metal such as Nickel and its alloy. If conditioner surface is corroded, diamonds on the conditioner surface would be fallen out from the surface. Because of this phenomenon, not only life time of conditioners is decreased, but also more scratches are generated. To protect the conditioners from corrosion, thin organic film deposition on the metal surface is suggested without requiring current conditioner manufacturing process. To prepare the anti-corrosion film on metal conditioner surface, vapor SAM (self-assembled monolayer) and FC (Fluorocarbon) -CVD (SRN-504, Sorona, Korea) films were prepared on both nickel and nickel alloy surfaces. Vapor SAM method was used for SAM deposition using both Dodecanethiol (DT) and Perfluoroctyltrichloro silane (FOTS). FC films were prepared in different thickness of 10 nm, 50 nm and 100 nm on conditioner surfaces. Electrochemical analysis such as potentiodynamic polarization and impedance, and contact angle measurements were carried out to evaluate the coating characteristics. Impedance data was analyzed by an electrical equivalent circuit model. The observed contact angle is higher than 90o after thin film deposition, which confirms that the coatings deposited on the surfaces are densely packed. The results of potentiodynamic polarization and the impedance show that modified surfaces have better performance than bare metal surfaces which could be applied to increase the life time and reliability of conditioner during W CMP.

CO2 Fixation by Magnesium Hydroxide from Ferro-Nickel Slag (페로니켈 슬래그로 부터 제조된 Mg(OH)2를 이용한 CO2 고정화)

  • Song, Hao-Yang;Seo, Jong-Beom;Kang, Seong-Kuy;Kim, In-Deuk;Choi, Bong-Wook;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.42-50
    • /
    • 2014
  • In this study, the $Mg(OH)_2$ slurry was made form ferro-nickel slag and then used for $CO_2$ sequestration. The experiments were in the order as leaching step, precipitation, carbonation experiments. According to the leaching results, the optimal leaching conditions were $H_2SO_4$ concentration of 1 M and the temperature of 333 K. In the $Mg(OH)_2$ manufacturing step, NaOH was added to increase the pH upto 8, the first precipitation was confirmed as $Fe_2O_3$. After removal the first precipitation, the pH was upto 11, the $Mg(OH)_2$ was generated by XRD analysis. The $Mg(OH)_2$ slurry was used for $CO_2$ sequestration. The pseudo-second-order carbonation model was used to apply for $CO_2$ sequestration. The $CO_2$ sequestration rate was increased by the $CO_2$ partial pressure and temperature. However, $CO_2$ sequestration rate was decreased when temperature upto 323 K. After $CO_2$ sequestrated by $Mg(OH)_2$, the $CO_2$ can be sequestrated stable as $MgCO_3$. This study also presented optimal sequestration condition was the pH upto 8.38, the maximum $MgCO_3$ can be generated. This study can be used as the basic material for $CO_2$ sequestration by ferro-nickel slag at pilot scale in the future.