• Title/Summary/Keyword: Material Reduction Rate

Search Result 475, Processing Time 0.026 seconds

Electrochemical Properties of SiOx Anode for Lithium-Ion Batteries According to Particle Size and Carbon Coating (입자 크기 및 탄소 코팅에 따른 리튬이온배터리용 SiOx 음극활물질의 전기화학적 특성)

  • Anna Park;Byung-Ki Na
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • In this study, the electrochemical properties of SiOx@C composite materials were prepared to alleviate volume expansion and cycle stability of silicon and to increase the capacity of anode material for LIBs. SiO2 particles of 100, 200, and 500 nm were synthesized by the Stӧber method, and reduced to SiOx (0≤x≤2) through the magnesiothermic reduction method. Then, SiOx@C anode materials were synthesized by carbonization of PVC on SiOx. The physical properties of prepared SiOx and SiOx@C anode materials were analyzed by XRD, SEM, TGA, Raman spectroscopy, XPS and BET. The electrochemical properties were investigated by cycling performance, rate performance, CV and EIS test. As a result, the SiOx@C-7030 manufactured by coating carbon at SiOx : C = 70 : 30 on a 100 nm SiOx with the smallest particle size showed the best electrochemical properties with a discharge capacity of 1055 mAh/g and a capacity retention rate of 81.9% at 100 cycles. It was confirmed that cycle stability was impoved by reducing particle size and carbon coating.

Residual Liquid Behavior Calculation for Vacuum Distillation of Multi-component Chloride System (다성분 염화물계 진공 증류의 잔류 액체 거동 계산)

  • Park, Byung Heung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.3
    • /
    • pp.179-189
    • /
    • 2014
  • Pyroprocessing has been developed for the purpose of resolving the current spent nuclear fuel management issue and enhancing the recycle of valuable resources. An electrolytic reduction of the pyroprocessing is a process to reduce oxides into metals using LiCl as an electrolyte and requires a post-treatment process due to the inclusion of residual salt in porous metal products. A vacuum distillation has been adopted for various molten salt systems and could be applied to the post-treatment process of the electrolytic reduction. The residual salt in the metal products includes LiCl, alkali chlorides, and alkaline earth chlorides. In this paper, vapor pressures of chlorides have been estimated and the composition changes on the residual liquid during the vacuum distillation process have been calculated. A model combining a material balance and vapor-liquid equilibrium relations has been proposed under a constant vapor discharging flow rate and liquid composition changes have been calculated using the vapor pressures with respect to a dimensionless time. The behaviors have been compared with temperature and molten salt composition changes to simulate the process condition variation. The distillation of the residual salt has been dominated by LiCl which is the main component of the salt and CsCl of which vapor pressure is higher than that of LiCl would be readily removed. RbCl exhibits similar vapor pressure with LiCl and maintains its composition. However, $SrCl_2$ and $BaCl_2$ of which vapor pressures are much lower than that of LiCl are concentrated with time and expected to be possibly precipitated during the distillation when the initial compositions are increased.

Study on Semi-Dry Process Developement of BP's Sludge by Non-Heating Manufacture Method (비가열 제조법에 의한 BP슬러지의 반건조 제조공정 개발에 관한 연구)

  • Kim, Byeong-Ki;Kim, Jae-Hwan;Kang, Seok-Pyo;Kang, Hye-Ju
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.313-319
    • /
    • 2015
  • This study relates to an investigation into semi-dry manufacturing process of BP sludge based on non-heating production method. In this study, we conducted a research into reduction of water content ratio which arose from mixture of BP by-products of high water content ratio(50% or higher) with industrial by-products to use such BP by-products as construction materials in large quantity. We measured the reduction rate of water content ratio at the feeding ratio of water content reduction agent(1:0.5) in BP by-products. The results showed that water content ratio was the lowest with 18.5% in the mixture of PA+CFA(1:0.5). Moreover, water content ratio ranged between approximately 9.2% and 11.4% at the age of 1 day to 2 days at the aging temperature of $20-30^{\circ}C$, suggesting that the water content ratio was in the range within 10% which was a level suitable for use as construction material in this study. Meanwhile, we compared and evaluated the physical properties of non-heated BP by-products based on post-aging pulverization method. The results showed that there was no significant difference, depending on pulverization method. When production efficiency and economic feasibility were taken into consideration, it was found desirable to use fine particle pulverizer or pin mill enabling continuous production.

A Study on the Factors Affecting the Influence Ranges of Ammonia Leakage by Using KORA Program (KORA 프로그램을 활용한 암모니아 누출사고 영향범위 결정 기여요인 연구)

  • Lim, Hyeongjun;Kwak, Sollim;Jung, Jinhee;Ryu, Taekwon;Choi, Woosoo;Lee, Jieun;Lee, Jinseon;Lee, Yeonhee;Kim, Jungkon;Yoon, Junheon;Ryu, Jisung
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.38-44
    • /
    • 2018
  • Ammonia is used primarily as a refrigerant in refrigeration facility and SCR of a plant, and is frequently involved in leakage accidents. This study was conducted by selecting ammonia, a material with a wide influence range when evaluated, as a material with higher vapor pressure and lighter than air. In this study, the influence ranges were computed using KORA(Korea Off-site Risk Assessment supporting tool) with four different environmental factors : ground roughness, sealing, operating temperature, pressure, and leakage hole size. As a result, the difference in the influence range of ground roughness is approximately 4.62 times, while the ammonia storage tank shows a difference in the reduction rate of 0.64 when sealed. The extent of impact increased with increasing leakage depending on storage temperature and pressure, and when storing higher than the saturation vapor pressure, the impact range showed an average growth rate of 3.45 % per 0.1 Mpa($45^{\circ}C$). The influence ranges based on the size of the leakage holes is shown to be proportional to the area of the leakage zone.

Behaviour of steel-fibre-reinforced concrete beams under high-rate loading

  • Behinaein, Pegah;Cotsovos, Demetrios M.;Abbas, Ali A.
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.337-353
    • /
    • 2018
  • The present study focuses on examining the structural behaviour of steel-fibre-reinforced concrete (SFRC) beams under high rates of loading largely associated with impact problems. Fibres are added to the concrete mix to enhance ductility and energy absorption, which is important for impact-resistant design. A simple, yet practical non-linear finite-element analysis (NLFEA) model was used in the present study. Experimental static and impact tests were also carried out on beams spanning 1.3 meter with weights dropped from heights of 1.5 m and 2.5 m, respectively. The numerical model realistically describes the fully-brittle tensile behaviour of plain concrete as well as the contribution of steel fibres to the post-cracking response (the latter was allowed for by conveniently adjusting the constitutive relations for plain concrete, mainly in uniaxial tension). Suitable material relations (describing compression, tension and shear) were selected for SFRC and incorporated into ABAQUS software Brittle Cracking concrete model. A more complex model (i.e., the Damaged Plasticity concrete model in ABAQUS) was also considered and it was found that the seemingly simple (but fundamental) Brittle Cracking model yielded reliable results. Published data obtained from drop-weight experimental tests on RC and SFRC beams indicates that there is an increase in the maximum load recorded (compared to the corresponding static one) and a reduction in the portion of the beam span reacting to the impact load. However, there is considerable scatter and the specimens were often tested to complete destruction and thus yielding post-failure characteristics of little design value and making it difficult to pinpoint the actual load-carrying capacity and identify the associated true ultimate limit state (ULS). To address this, dynamic NLFEA was employed and the impact load applied was reduced gradually and applied in pulses to pinpoint the actual failure point. Different case studies were considered covering impact loading responses at both the material and structural levels as well as comparisons between RC and SFRC specimens. Steel fibres were found to increase the load-carrying capacity and deformability by offering better control over the cracking process concrete undergoes and allowing the impact energy to be absorbed more effectively compared to conventional RC members. This is useful for impact-resistant design of SFRC beams.

A Study on the Removal of Dissolved Matter in Groundwater and Characteristics of Fouling using NF and RO (NF와 RO를 이용한 지하수중 용존성 물질의 제거와 막 오염의 특성에 관한 연구)

  • Gwon, Eun-Mi;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2205-2213
    • /
    • 2000
  • To investigate removal efficiency of dissolved matter by NF and RO, a pilot plant was operated for six months using groundwater treated by UF membrane. After the pilot plant operation, we performed autopsy test to identify characteristics of foulant attached on the membrane surface applying the used NF and RO in the pilot plant test. In autopsy test, we measured permeate flux and recovery rate of flux by chemical cleaning in each membrane. We also analyzed chemical cleaning disposal to examine component of foulant. Permeate flux of NF and RO1 showed rapid decline after 100 days of operation. Especially, reduction of specific flux in RO1 was more serious than in NF. Specific flux of RO2 with a low recovery rate resulted in gradual flux decline. Removal efficiencies of dissolved inorganic matters as a conductivity were 76.3%, 88.2% and 95.3% respectively for NF, RO1 and RO2, and RO2 presented the highest removal efficiency. And those of dissolved organic matters as TOC were about 80% for both NF and RO. The specific flux of membranes declined gradually from the feed water inlet to outlet of the membrane module and it showed that membrane fouling increased along the feed flow direction. Namely, concentration of pollutants became higher and volume of feed water was less as the feed flow approached to the outlet. It seemed that major foul ants were Ca consolidated into inorganic material and Si consolidated into organic material on the membrane surface. Fe was a great contribution to irreversible fouling. The SEM results indicated that the organic matter was attached to the first layer, closer to the membrane, and then inorganic matter with tetragonal shape layered over them. We could not observe biofouling because microorganism, which was cause of biofouling, was almost pretreated in UF membrane.

  • PDF

Survival of Bacillus cereus and Its Transfer from Agricultural Product-Contact Surfaces to Lettuce (Bacillus cereus의 농산물 접촉 표면 재질별 생존력 및 상추로의 교차오염도 조사)

  • Kim, Se-Ri;Seo, Min-Kyoung;Kim, Won-Il;Ryu, Kyoung Yul;Kim, Byung-Seok;Ryu, Jae-Gee;Kim, Hwang-Yong
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.253-259
    • /
    • 2014
  • This study was conducted to investigate survival of Bacillus cereus (B. cereus) on stainless steel and polyvinyl chloride (PVC) and its transfer from two material to lettuce. The stainless steel and PVC were innoculated with B. cereus and stored at 6 combination conditions (temperature : $20^{\circ}C$ and $30^{\circ}C$, relative humidity (RH) : 43%, 69%, and 100%). Although the total numbers of B. cereus at RH 43% and RH 69% were reduced by 3.53-4.00 log CFU/coupon within 24 h regardless of material type, the spore numbers of B. cereus was lasted at 3.0 log CFU/coupon. When two materials were stored at $30^{\circ}C$, RH 100%, the spore numbers of B. cereus was rapidly increased by 3.0 log CFU/coupon. In addition, the reduction rate of B. cereus was decreased in the presence of organic matter. Transfer rate of B. cereus from surface of stainless steel and PVC to lettuce was increased by 10 times in the presence of water on the lettuce surface. As a result of this study, the presence of B. cereus on produce contact surfaces can increase the risk of cross-contamination. Thus, it is important that the packing table and conveyer belt in post harvest facility should be properly washed and sanitized after working to prevent cross-contamination.

Development of jigs for planar measurement with DIC and determination of magnesium material properties using jigs (마그네슘 합금 판재의 평면 DIC 측정을 위한 지그 개발과 이를 활용한 단축 변형 특성 분석)

  • Kang, Jeong-Eun;Yoo, Ji-Yoon;Choi, In-Kyu;YU, Jae Hyeong;Lee, Chang-Whan
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.23-29
    • /
    • 2021
  • The specific strength of magnesium alloy is four times that of iron and 1.5 times that of aluminum. For this reason, its use is increasing in the transportation industry which is promoting weight reduction. At room temperature, magnesium alloy has low formability due to Hexagonal closed packed (HCP) structure with relatively little slip plane. However, as the molding temperature increases, the formability of the magnesium alloy is greatly improved due to the activation of other additional slip systems, and the flow stress and elongation vary greatly depending on the temperature. In addition, magnesium alloys exhibit asymmetrical behavior, which is different from tensile and compression behavior. In this study, a jig was developed that can measure the plane deformation behavior on the surface of a material in tensile and compression tests of magnesium alloys in warm temperature. A jig was designed to prevent buckling occurring in the compression test by applying a certain pressure to apply it to the tensile and compression tests. And the tensile and compressive behavior of magnesium at each temperature was investigated with the developed jig and DIC equipment. In each experiment, the strain rate condition was set to a quasi-static strain rate of 0.01/s. The transformation temperature is room temperature, 100℃. 150℃, 200℃, 250℃. As a result of the experiment, the flow stress tended to decrease as the temperature increased. The maximum stress decreased by 60% at 250 degrees compared to room temperature. Particularly, work softening occurred above 150 degrees, which is the recrystallization temperature of the magnesium alloy. The elongation also tended to increase as the deformation temperature increased and increased by 60% at 250 degrees compared to room temperature. In the compression experiment, it was confirmed that the maximum stress decreased as the temperature increased.

Evaluation of Attenuation Rate Error on Skin Dosimeter using Monte Carlo Simulation in Photon and Electron Beam Therapy (광자선 및 전자선 치료에서 피부선량계의 측정과 시뮬레이션을 이용한 감약률 오차 평가)

  • Han, Moo-Jae;Yang, Seung-Woo;Heo, Seung-Uk;Bae, Sang-Il;Moon, Young-Min;Park, Sung-Kwang;Kim, Jin-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.841-848
    • /
    • 2020
  • In the field of radiation therapy using photon beams and electron beams, since each patient has a different sensitivity to radiation, skin side effects may occur even at the same dose. Therefore, if there is a risk of excessive dose to the skin, a dosimeter is attached to verify whether the correct dose is being investigated. However, since the skin dosimeter checks the attachment site visually by measuring a point dose, it is difficult to confirm an accurate dose distribution. As a result, the measurement and simulation errors of the material HgI2 in the 6 MV photon beam were 3.73% and 5.24%, respectively, at the minimum thickness of 25 ㎛, and the material PbI2 was 4.73% and 5.65%, respectively. On the other hand, as a result of the 6 MeV electron beam, the measurement and simulation errors of the material HgI2 were 1.35% and 1.12%, respectively, at a minimum thickness of 25 ㎛, and the material PbI2 showed relatively low attenuation error, 1.67% and 1.20%, respectively. Therefore, it was evaluated that the thickness of the photon beam within 25 ㎛ and the electron beam within 100 ㎛ is suitable to have a reduction rate error within 5%. This study presents a new research direction for a flexible dosimeter attached to the human body that is required in clinical practice and the construction conditions of a future skin dosimeter.

Effects of CaCl2 on Gas Exchange and Stomatal Responses in the Leaves of Prunus serrulata (염화칼슘이 벚나무 잎의 가스교환 및 기공반응에 미치는 영향)

  • Je, Sun Mi;Kim, Sun Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.303-308
    • /
    • 2016
  • To investigate the effect of calcium chloride ($CaCl_2$) using for deicing salts in winter on gas exchange and stomatal responses of 3-year-old Prunus serrulata, we treated twice (1 L) $CaCl_2$ solution (0.5%, 1.0% and 3.0%) in the root zone before leaf unfolding. Stomatal conductance ($g_s$), photosynthetic rate ($P_n$), transpiration rate ($T_r$) and water use efficiency (WUE) in the leaves of P. serrulata were decreased with increasing of $CaCl_2$ concentration. Even though stomatal conductance and photosynthetic rate were reduced by $CaCl_2$, intercellular $CO_2$ concentration ($C_i$) in $CaCl_2$ treatments has similar or higher values compared with control. These results suggest that non-stomatal limitation as well as stomatal limitation induced the reduction of photosynthetic rate together. On the other hands, treatment of $CaCl_2$ before leaf unfolding also affected leaf morphology traits. We proposed that reductions of stomatal length and leaf size and high pore density with increasing salinity is adaptative mechanism to reduce the water loss in plant.