• Title/Summary/Keyword: Material Property Test

Search Result 776, Processing Time 0.032 seconds

Reliability analysis test of high brightness micro optical component and module (고휘도 마이크로 광부품 / 모듈의 신뢰성 분석 시험)

  • Lee N.K.;Lee H.J.;Choi S.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.535-536
    • /
    • 2006
  • Researches about micro technology travel lively in these days. Such many researches are concentrated in the field of materials and a process field. But properties of micro materials should be known to give results of research developed into still more. In these various material properties, reliability data such as mechanical, optical, thermal property, etc is the basic property. In this paper, it is measured that is material properties of main BLU(Back Light Unit) components in LCD(Liquid Crystal Display). The pattern shape of prism sheet, diffuser film and reflective plate are measured by variable 3D scanning equipments. It is researched which is the method to measure an optimal 3D pattern shape in each components.

  • PDF

Study of Dual Servo System for Measurement System of Mechanical Property (재료의 기계적 물성측정 시험장치를 위한 이중서보 시스템에 관한 연구)

  • 최현석;송치우;한창수;이형욱;최태훈;이낙규;나경환
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.2
    • /
    • pp.31-37
    • /
    • 2003
  • This paper presents a measurement system of mechanical property using dual servo system. There are many kinds of method to measure material properties such as tensile test, indention and bending test. It is highly required to measure the properties of nano-sized material and structure. However, It is need more accurate measurement system, more stable and frequency response than conventional test. In this paper, we designed the dual servo system for a measuring instrument The dual servo system consisting of a coarse stage and a fine motion stage with VCM and PZT is proposed. Mechanical mechanism is designed with the leaf spring type of flexure hinge joint. Lead compensator is applied to this control system, and is designed by PQ method.

  • PDF

Preparation and Characteristics of High Voltage Liquid Silicone Rubber by Modified Cross-linking Agent

  • Jung, Se-Young;Kim, Byung-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • There is a growing demand for a high voltage silicone rubber composite with high mechanical property and high electrical property. The effect of modified cross-linking agent on the mechanical, electrical properties, and short-circuit test performance of silicone rubber insulators have been investigated. To use base polymer, the various silicone polymers were prepared by the equilibrium polymerization. Aluminum trihydrate surface was treated by vinyl silane. Liquid silicone rubber nanocomposite was prepared from the compounding of VPMPS, HPDMS, catalyst, and alumina trihydrate modified with 1,3,5-trivinyl-l,3,5-trimethylcyclotrisiloxane. The mechanical property and electrical property for insulation materials were measured, indicating the high tensile strength and the good short-circuit property.

Dynamic Material Property of the Sinter-Forged Cu-Cr Alloys with the Variation of Chrome Content (구리-크롬 소결단조 합금의 크롬 함유량 변화에 따른 동적 물성특성)

  • Song Jung-Han;Huh Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.670-677
    • /
    • 2006
  • Vacuum interrupters are used in various switch-gear components such as circuit breakers, distribution switches, contactors. The electrodes of a vacuum interrupter are manufactured of sinter-forged Cu-Cr material for good electrical and mechanical characteristics. Since the closing velocity is 1-2m/s and impact deformation of the electrode depends on the strain-rate at the given velocity, the dynamic material property of the sinter-forged Cu-Cr alloy is important to design the vacuum interrupter reliably and to identify the impact characteristics of a vacuum interrupter accurately. This paper is concerned with the dynamic material properties of sinter-forged Cu-Cr alloy for various strain rates. The amount of chrome is varied from 10 wt% to 30 wt% in order to investigate the influence of the chrome content on the dynamic material property. The high speed tensile test machine is utilized in order to identify the dynamic property of the Cu-Cr alloy at the intermediate strain-rate and the split Hopkinson pressure bar is used at the high strain-rate. Experimental results from both the quasi-static and the high strain-rate up to the 5000/sec are interpolated with respect to the amount of chrome in order to construct the Johnson-Cook and the modified Johnson-Cook model as the constitutive relation that should be applied to numerical simulation of the impact behavior of electrodes.

Evaluation on Laboratory Moisture Damage Characteristics of the Asphalt Mixtures using Indirect Tensile Test (간접인장시험을 이용한 아스팔트 혼합물의 실내 수분손상 특성 평가)

  • Hwang, Sung Do;Rhee, Suk Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.243-248
    • /
    • 2008
  • Moisture damage of asphalt pavements can usually occur because of the loss of adhesion and cohesion between the asphalt binder and aggregate in the asphalt mixture due to presence of water. And this is one of the causes that is effect on the main distress of asphalt pavement. The objective of this study is to find out moisture damage characteristics of asphalt pavement. Effects of this study changes of the material properties and resistance characteristics of moisture damage on the asphalt mixtures under various temperatures and repeated immersion using indirect tensile test and modify Lottman test were evaluated during this study. The asphalt mixtures were produced using straight asphalt binder, SBS modified asphalt binder and aggregates. The material properties (resilient modulus, indirect tensile strength, failure energy and $DCSE_f$) of the asphalt mixtures were generally decreased with increasing to moisture damage caused by the number of repeated immersion. The decrease ratios of material properties by repeated immersion on SBS modified asphalt mixtures were lower than those of straight asphalt mixtures at all three test temperatures. As a conclusion, current criterion for evaluation moisture damage of asphalt mixtures is difficult for using distinction standard because of the limited evaluation criterion with one time immersion and single material property. Based on this research, to evaluate long term moisture damage on asphalt mixtures, material property tests of various kinds with repeated immersion test are considered.

A Study on Manufacturing of Sample Holder for the EM Property Analysis in W-band (W-band 전파특성 분석용 샘플홀더 제작에 관한 연구)

  • Choi, Chang-Mook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1397-1403
    • /
    • 2011
  • In this paper, fabrication of sample holder was studied for an analysis of electromagnetic(EM) wave property in W-band(75 GHz~110 GHz). First of all, a propagation theory of EM wave was considered in the rectangular waveguide, and measurement technique was suggested for analysis of characteristics. A sample holder using in W-band was designed and fabricated, and used for analysis of material property and absorption ability using RAM samples. As a result, the sample holder test was verified exactly for measuring EM wave property of RAM sample. In the future, the proposed sample holder would like to be used for the EM wave property analysis in W-band.

The Effect of Fcoidan Molecula Weight on Cosmetic Function (후코이단의 분자량이 화장품기능성에 미치는 영향)

  • Cha, Seong Han;Ahn, Myeong Won;Lee, Jung Shik;Kim, Young Suk;Kim, Dong-Uk;Byun, Tae Gang;Park, Kwon Pil
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.604-609
    • /
    • 2012
  • Properties of fucoidan used for functional cosmetic ingredients and the effect of fucoidan molecular weight on the cosmetic functions were studied. Fucoidan was extracted from Undaria pinnatifida sporophylls and molecular weight (35~160 kDa) of fucoidan was controlled by contact glow discharge electrolysis (CGDE). To test possibility of fucoidan as a cosmetics material, tyrosinase inhibition property, water-holding property, elastase activity inhibition property and DPPH free radical scavenging property were measured. Water-holding property of fucoidan was higher than that of hyaruronic acid, which is known as the one of the best water-holding material. The water-holding strength of fucoidan slightly increase as molecular weight of fucoidan decrease. Elastase activity inhibition (anti wrinkle effect) of fucoidan was higher than that of adenosine using standard material for anti wrinkle test. Optimum molecular weight of fucoidan to obtain highest tyrosin inhibition effect, elastase inhibition effect and radical scavenger effect is 100 kDa.

Development of Uniaxial Tensile Test Method to Evaluate Material Property of Tungsten Carbide-Cobalt Alloys for Cold Forging Dies (냉간단조 금형 WC-Co합금의 인장시험방법 개발 및 물성평가)

  • Kwon, I.W.;Seo, Y.H.;Jung, K.H.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.370-378
    • /
    • 2018
  • Cold forging, carried out at room temperature, leads to high dimensional accuracy and excellent surface integrity as compared to other forging methods such as warm and hot forgings. In the cold forging process, WC-Co (Tungsten Carbide-Cobalt) alloy is the mainly used material as a core dies because of its superior hardness and strength as compared to other structural materials. For cold forging, die life is the most significant factor because it is directly related to the manufacturing cost due to periodic die replacement in mass production. To investigate die life of WC-Co alloy for cold forging, mechanical properties such as strength and fatigue are essentially necessary. Generally, uniaxial tensile test and fatigue test are the most efficient and simplest testing method. However, uniaxial tension is not efficiently application to WC-Co alloy because of its sensitivity to alignment of the specimen due to its brittleness and difficulty in thread machining. In this study, shape of specimen, tools, and testing methods, which are appropriate for uniaxial tensile test for WC-Co alloy, are proposed. The test results such as Young's modulus, tensile strength and stress-strain curves are compared to those in previous literature to validate the proposed testing methods. Based on the validation of test results it was concluded that the newly developed testing method is applicable to other cemented carbides like Titanium carbides with high strength and brittleness, and also can be utilized to carry out fatigue tests for further investigation on die life of cold forging.

A Study on the Correlation between Advanced Small Punch Test and Charpy V-notch Test on X20CrMoV121 and 2.25Cr1Mo steels Weldment (X20CrMoV121강과 2.25Cr1Mo강 용접부의 ASP 시험과 CVN 충격 시험의 상관관계에 대한 연구)

  • Lee, Dong-Hwan;Kim, Hyoung-Sup
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.37-44
    • /
    • 2008
  • Charpy V-Notch test is commonly used to evaluate fracture toughness. However, since the region to be evaluated is limited to bulk material due to the specimen size required, individual evaluation of micro-structures on weldment is very difficult. In this study, ASP(Advanced Small Punch) test was carried out to evaluate material degradation and fracture toughness on the B.M, W.M and each micro-structures of HAZ for X20CrMoV121 and 2.25Cr1Mo steels with artificial aging time. In addition, to evaluate fracture toughness and material degradation of B.M and W.M of X20CrMoV121 steels with aging times, CVN (Charpy V-notch) test was performed. And then the correlation between ASP and CVN test on X20CrMoV121 steels was obtained. Furthermore, through this correlation, material degradation property of each micro-region of the HAZ in weldment, which was impossible to be evaluated by the CVN test, can be estimated and determined.

The Evaluation of Mechanical Property of X20CrMoV12.1 Boiler Tube Steels (X20CrMoV12.1강의 열화에 따른 기계적특성 평가)

  • Kim, B.S.;Lee, S.H.;Kim, D.S.;Jung, N.G.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.18-22
    • /
    • 2004
  • Boiler is one of the most important utilities providing steam to turbine in order to supply mechanical energy in thermal power plant. It is composed of thousands of tubes for high efficient heat transfer. The material for boiler tubes is used in such high temperature and pressure condition as $540^{\circ}C$, 22MPa. The boiler tube material is required to resist creep damage, fatigue cracking, and corrosion damages. 2.25%Cr-1Mo steel is used for conventional boiler tubes, and austenitenite stainless steel is used for higher temperature boiler tubes. But the temperature and pressure of steam in power plant became higher for high plant efficiency. So, the property of boiler tube material must be upgaded to fit the plant property. Several boiler tube material was developed to fit such conditions. X20CrMoV12.1 steel is also developed in 1980's and used for superheater and reheater tubes in supercritical boilers. The material has martensite microstructures which is difficult to evaluate the degradation. In this thesis, degrade the X20CrMoV12.1 steel at high temperatures in electric furnace, and evaluate hardness with Vickers hardness tester and strengths with Indentation tester.

  • PDF