• 제목/요약/키워드: Material Process

검색결과 12,522건 처리시간 0.043초

유도가열을 고려한 반용융 재료의 성형공정에 관한 유한요소 해석 (Finite Element Analysis for Forming Process of Semi-Solid Material Considering Induction Heating)

  • Park, W.D.;Ko, D.C.;Kim, B.M.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제14권8호
    • /
    • pp.82-91
    • /
    • 1997
  • The major objective of this study is to establish analytical technique in order to analyze the behaviour of semi-solid material considering induction heating of the billet. Induction heating process is analyzed by using commerical finite element software. ANSYS. The finite element program, SFAC2D, for the simulation of deformation in semi-solid state is developed in the present study. The semi-solid behaviour is described by a viscoplastic model for the solid phase, and by the Darcy's law for the liquid flow. Simple compression and closed-die compression process considering induction heating are analyzed, and also it is found that the distribution of initial solid fraction of the billet has an important effect on deformation behaviour of semi-solid material. In order to verify the effectiveness of proposed analytical technique the simulation result is compared with experimental result.

  • PDF

Examination of Diffusion Process for High-speed Avalanche Photodiode Fabrication

  • Ilgu Yun;Hyun, Kyujg-Sook;Kwon, Yong-Hwan;Pyun, Kwang-Eui
    • 한국전기전자재료학회논문지
    • /
    • 제13권11호
    • /
    • pp.954-958
    • /
    • 2000
  • The characterization of zinc diffusion processes applied for high-speed avalanche photodiodes has been examined. The different diffusion process conditions for InP test structures were explored. The zinc diffusion profiles, such as the diffusion depth and the zinc dopant concentration, were examined using secondary ion mass spectrometry with varying the process variables and material parameters. It is observed that the diffusion profiles are severly impacted on the process parameters, such as the amount of Zn$_3$P$_2$ source and the diffusion time, as well as material parameters, such as doping concentration of diffusion layer. These results can be utilized for the high-speed avalanche photodiode fabrication.

  • PDF

Study of Zinc Diffusion Process for High-speed Avalanche Photodiode Fabrication

  • Ilgu Yun;Hyun, Kyung-Sook;Pyun, Kwang-Eui
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.731-734
    • /
    • 2000
  • The characterization of Zinc diffusion processes applied fur high-speed avalanche photodiodes has been examined. The different diffusion process conditions for InP test structures were explored. The Zinc diffusion profiles, such as the diffusion depth and the Zinc dopant concentration, were examined using secondary ion mass spectrometry with varying the process variables and material parameters. It is observed that the diffusion profiles are severely impacted on the process parameters, such as the amount of Zn$_3$P$_2$source and the diffusion time, as well as material parameters, such as doping concentration of diffusion layer. These results can be utilized for the high-speed avalanche photodiode fabrication.

  • PDF

액체로켓 연소기 재생냉각형 노즐의 벌징 공정 개발 (Development of Bulging Process for Regenerative Cooling Nozzle of Liquid Rocket Thrust Chamber)

  • 류철성;최환석
    • 항공우주기술
    • /
    • 제7권2호
    • /
    • pp.103-109
    • /
    • 2008
  • 액체로켓 연소기의 제작에 필수적인 재생냉각 노즐의 벌징공정에 대한 연구를 수행하였다. 벌징공정을 개발하기 위하여 벌징시험용 재료에 대한 인장시험을 수행하여 기계적인 물성 값들을 획득하였다. 벌징공정을 완료하기 위해서는 벌징치구가 2개 또는 3개 필요하였다. 재료의 네킹이 벌징공정에서 발생되는 주된 실패 원인이었으며, 재료의 그레인 사이즈가 이 네킹 발생에 큰 영향을 미침을 본 연구에서 나타났다. 그레인 사이즈를 조절한 재료로 현재 개발된 벌징공정을 이용하여 축소형 및 30톤 실물형 재생냉각 노즐의 제작을 성공적으로 수행함으로서 본 연구에서 개발된 벌징공정의 적용성 및 유용성을 보여주었다.

  • PDF

Development of Ultral Clean Machining Technology with Electrolytic Polishing Process

  • Lee, Eun-Sang;Park, Jeong--Woo;Moon, Young-Hun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권1호
    • /
    • pp.18-25
    • /
    • 2001
  • Electrolytic polishing is the anodic dissolution process in the transpassive state. It removes non-metallic inclusion and improves mechanical and corrosion resistance of stainless steel. If there is a Bailby layer, it will be removed and the true structure of the surface will be restored. Electrolytic polishing is normally used to remove a very thin layer of material from the surface of metal object. A new electrolyte composed of phosphoric, sulfuric and distilled water has been developed in this study. Two current density, high & low current density regions, have been applied in this study. In this study, In the region of high current density, there is no plateau region but excellent electrolytic polishing effect can be accomplished in short machining time because material removel process and leveling process occur simultaneously. In the low current density region, there can be found plateau region. The material removal process and leveling process occur successively. The aim of this work is to determine electrolytic polishing for stainless steel in terms of high & low current density and workpiece surface roughness.

  • PDF

Fine-Pitch Solder on Pad Process for Microbump Interconnection

  • Bae, Hyun-Cheol;Lee, Haksun;Choi, Kwang-Seong;Eom, Yong-Sung
    • ETRI Journal
    • /
    • 제35권6호
    • /
    • pp.1152-1155
    • /
    • 2013
  • A cost-effective and simple solder on pad (SoP) process is proposed for a fine-pitch microbump interconnection. A novel solder bump maker (SBM) material is applied to form a 60-${\mu}m$ pitch SoP. SBM, which is composed of ternary Sn3.0Ag0.5Cu (SAC305) solder powder and a polymer resin, is a paste material used to perform a fine-pitch SoP through a screen printing method. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder, the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. Test vehicles with a daisy chain pattern are fabricated to develop the fine-pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si chip has 6,724 bumps with a 45-${\mu}m$ diameter and 60-${\mu}m$ pitch. The chip is flip chip bonded with a Si substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of the underfill. The optimized bonding process is validated through an electrical characterization of the daisy chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and microbump interconnection using a screen printing process.

Study on the Rigidity of the Solid-HDDR Treated Nd-Fe-B-type Materials

  • Kang, S.J.;Kwon, H.W.
    • Journal of Magnetics
    • /
    • 제3권1호
    • /
    • pp.9-14
    • /
    • 1998
  • A non-coercive cast Nd-Fe-B-type material can be easily converted into a coercive one by employing HDDR process. Applying the conventional HDDR process to the Nd-Fe-B-type material generally leads to a powder-like material. HDDR treated material in a solid form can, however, be realised if the process is properly modified (solid-HDDR). In the present study, the change of rigidity (compressive strength) of the Nd-Fe-B-type material during the solid-HDDR has been investigated using a homogeneous sintered magnet with composition $Nd_{13.8}Dy_{0.7}Fe_{78.25}Si_{0.15}Mn_{0.6}B_{6.5}.$ It has been found that the low strength of the hydrided material was improved by the subsequent disproportionation. The restoration of the strength was explained by the eutectoid-like disproportionation structure containing fine neodymium hydride rod embedded in tough iron matrix. The high strength of disproportionated material was reduced radically in earlier stage of recombination, and this wes explained by the reduction of the disproportionated phase. The reduced strength was, however, recovered by further recombination, and this was explained by the fact that as the recombination continues the recombined grains adhere together. The optimally HDDR processed material has a comparable or even higher strength with respect to the initial sintered material prior to the solid-HDDR. The present study suggested that the rigidity of Nd-Fe-B-type material could be retained even after the solid-HDDR.

  • PDF

플랜트 기자재 설계품질 향상을 위한 STAGE-GATE 기반 평가항목 개발 (Development of STAGE-GATE based Evaluation Index for the Improvement of Design Quality of Plant Material)

  • 이인태;백동현
    • 산업경영시스템학회지
    • /
    • 제43권2호
    • /
    • pp.65-71
    • /
    • 2020
  • Worldwide plant market keeps maintaining steady growth rate and along with this trend, domestic plant market and its contractors also maintain such growing tendency. However, in spite of its external growth, win-win growth of domestic material industry that occupies the biggest share in plant industry cost portion is extremely marginal in reality. Domestic plant material suppliers are required to increase awareness of domestic material brand by securing quality and reliability of international standard through improvement of design quality superior to that of overseas material suppliers. Improvement of design quality of plant material becomes an essential element, not an option, for survival of domestic plant industry and its suppliers. Under this background, in this study, priority and importance by each evaluation index was analyzed by materializing plant design stage through survey of experts and defining evaluation index by each design stage and based on this analysis result, evaluation index of stage-gate based decision-making process that may improve design quality of plant material was suggested. It is considered that by utilizing evaluation index of stage-gate based decision-making process being suggested in this study, effective and efficient decision-making of project decision-makers would be enabled and it would be contributory to improve design quality of plant material.

ZERO-EMISSION MATERIALS CYCLE IN PRODUCTION PROCESS AND REGIONAL SCALE

  • FUJIE, Koichi
    • 청정기술
    • /
    • 제3권2호
    • /
    • pp.13-24
    • /
    • 1997
  • The present paper aims to give basic information to establish zero emission material cycle including the minimization of emissions from industrial production processes and the area in regional scale. Strategies and methodologies to analyze emissions from the production processes and our human activities and to reduce those emissions by refining and/or replacing the unit process with the alternatives are introduced as well. Quantitative evaluation and management systems of any raw materials and the production process are from vie points of treatment are essential. Estabiishment of a process networking for the recycle of discharged non-products materials by the intra-process, trans-process and the trans-industries are proposed. Procedures and priorities to formulate industrial and regional zero emission system are proposed as well.

  • PDF

미세 펄스전원을 이용한 스테인레스강의 전기화학연마 (Study on Electrochemical Polishing for Stainless Steel using Micro Pulse Current)

  • 이동활;박정우;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.127-130
    • /
    • 2003
  • Electrolytic polishing is the anodic dissolution process in the transpassive state. It removes non-metallic inclusions and improves mechanical and corrosion resistance of stainless steel. Electrolytic polishing is normally used to remove a very thin layer of material from the surface of a metal object. An electrolyte of phosphoric, sulfuric and distilled water has been used in this study. In the low current density region, there can be found plateau region and material removal process and leveling process occur successively. In this study, an electrochemical polishing process using pulse current is adopted as a new electrochemical polishing process. In electrochemical machining processes, it has been found that pulse electrochemical processes provide an attractive alternative to the electrochemical processes using continuous current. Hence, this study will discuss the electrochemical polishing processes in low current density region and pulse electrochemical polishing.

  • PDF