• Title/Summary/Keyword: Material Handling Automation System

Search Result 21, Processing Time 0.027 seconds

A Proposal on the Consulting Model for Efficient Construction of Material Handling Automation System : Focused on K Company's Case (물류자동화 시스템의 효율적 구축을 위한 컨설팅 방법론 제안 : K기업의 사례를 중심으로)

  • Ko, J.H.;Cho, J.H.;Oh, H.S.;Shim, S.C.;Ryu, J.H.;Lee, S.J.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.202-211
    • /
    • 2015
  • Companies build the factory automation system to improve management effectiveness and productivity as prime strategies for sustainable growth. But most companies undergo various trials and errors while carrying out the project without elaborate preparation stage for factory automation. In this study, we tried to verify what factors are critical to effectively building distribution automation system, which is a branch of factory automation system. A consulting model for setting up a Material Handling Automation System by utilizing the Stage-Gate Process, which is product development process was studied. 29 material handling automation projects carried out between the year 1990 to 2013 at K-Company were selected. Interviews with the project managers, operators and maintenance personnels, various records and current status of the projects were used as data for structural equations based on the Milan consulting model and existing researches of factory automation, CIM for material handling automation. Creating effective basis of production, material handling system and energy saving system with expert review, when preparing a material handling automation project, help promote the project planning thus contributing to the performance of the resulting system, which appears though rather weakly in our data. Also the effect of material handling automation can be enhanced through sufficient and effective links to the relevant environments such as production logistics management and automated warehouses. More detailed planning characteristics of project promotion or some time-series data of effective Material Handling Automation System could enhace furthur studies. We propose a consulting model for setting up an efficient material handling automation system.

Technical Analysis of Material Handling System in Production System (생산시스템에서의 물류시스템 기술분석)

  • Kim, Dong-Hun
    • 연구논문집
    • /
    • s.26
    • /
    • pp.57-68
    • /
    • 1996
  • Recently, a lot of researches on material handling system are actively studied for realization of FA(Factory Automation), FMS(Flexible Manufacturing System) and CIM(Computer Integrated Manufacturing). Management and application of material handling system are precondition technologies playing an important part in integration of production system including manufacturing. assemhly, and inspection cell. In this paper, the general situation of automation technology is investigated and technology level is analyzed in comparision with an advanced country. And the operation trend and part of material handling system including AS/RS, AGV, and Conveyor, are studied. And also technologies related to material handling system in the inside and outside of the country are studied.

  • PDF

Moving Path Following of Autonomous Mobile Robot using Fuzzy (퍼지를 이용한 자율이동로봇의 이동경로 추종)

  • 김은석;주기세
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.84-92
    • /
    • 2000
  • Recently, the progress of industrialization has been taken concern of material handling automation. So for, the conveyor belt has been popular for material handling. However, this system has many disadvantages such as the space, cost, etc. In this paper, a new navigation algorithm using fuzzy is introduced. The mobile robot follows a line installed on the roads. These informations are inputted with three approximate sensors. These obtained informations are analyzed with fuzzy control technique fur autonomous steering. Therefore, unlike existing systems, high reliability is guaranteed under bad environment conditions. The installation and maintenance of a line is easily made at lower cost. This developed mobile robot can be applied to material handling automation in manufacturing system, hospital, inter-office document del ivory.

  • PDF

Preliminary design of a production automation framework for a pyroprocessing facility

  • Shin, Moonsoo;Ryu, Dongseok;Han, Jonghui;Kim, Kiho;Son, Young-Jun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.478-487
    • /
    • 2018
  • Pyroprocessing technology has been regarded as a promising solution for recycling spent fuel in nuclear power plants. The Korea Atomic Energy Research Institute has been studying the current status of equipment and facilities for pyroprocessing and found that existing facilities are manually operated; therefore, their applications have been limited to laboratory scale because of low productivity and safety concerns. To extend the pyroprocessing technology to a commercial scale, the facility, including all the processing equipment and the material-handling devices, should be enhanced in view of automation. In an automated pyroprocessing facility, a supervised control system is needed to handle and manage material flow and associated operations. This article provides a preliminary design of the supervising system for pyroprocessing. In particular, a manufacturing execution system intended for an automated pyroprocessing facility, named Pyroprocessing Execution System, is proposed, by which the overall production process is automated via systematic collaboration with a planning system and a control system. Moreover, a simulation-based prototype system is presented to illustrate the operability of the proposed Pyroprocessing Execution System, and a simulation study to demonstrate the interoperability of the material-handling equipment with processing equipment is also provided.

Development of a material handling automation simulation using a virtual AGV (가상 AGV를 이용한 물류자동화 시뮬레이션 개발)

  • Ro, Young-Shick;Kang, Hee-Jun;Suh, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.563-566
    • /
    • 2006
  • In this paper, we studied about AGVs modeling and material handling automation simulation using a virtual AGV. The proposed virtual AGV model that operates independently each other is based on a real AGV. Continuous straight-line and workstation model using vector drawing method that could easily, rapidly work system modeling are suggested. Centralized traffic control, which could collision avoidance in intersection and should not stop AGV as possible, and algorithm for detour routing which performs when another AGV is working in pre-routed path are proposed. The traffic control and the algorithm have been proved efficiently by simulation.

  • PDF

Validation of the Control Logic for Automated Material Handling System Using an Object-Oriented Design and Simulation Method (객체지향 설계 및 시뮬레이션을 이용한 자동 물류 핸들링 시스템의 제어 로직 검증)

  • Han Kwan-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.834-841
    • /
    • 2006
  • Recently, many enterprises are installing AMSs(Automated Manufacturing Systems) for their competitive advantages. As the level of automation increases, proper design and validation of control logic is a imperative task for the successful operation of AMSs. However, current discrete event simulation methods mainly focus on the performance evaluation. As a result, they lack the modeling capabilities for the detail logic of automated manufacturing system controller. Proposed in this paper is a method of validation of the controller logic for automated material handling system using an object-oriented design and simulation. Using this method, FA engineers can validate the controller logic easily in earlier stage of system design, so they can reduce the time for correcting the logic errors and enhance the productivity of control program development Generated simulation model can also be used as a communication tool among FA engineers who have different experiences and disciplines.

The Status of Material Handling Industry and the Scheme of Development (운반하역기계 산업의 현황과 발전 방안)

  • 신용하;조영준;손병진
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.15 no.26
    • /
    • pp.1-11
    • /
    • 1992
  • Material Handling equipments such as hoists, cranes, storage and retrieval machines, gantry robots and conveyors are carrying out more important tasks in material flow automation field. This paper is concerned with the characteristic and the position of this industry, and presents the status of the business world scale, supply and demmand. import and export transition, and directing posts of the profits. Also it gives productivity security and activity.

  • PDF

Development of Automatic Steering System using Image Processing Technique (영상처리기법을 이용한 자율주행시스템 개발)

  • Cho, Chi-Woon;Park, Sung-Won
    • IE interfaces
    • /
    • v.10 no.2
    • /
    • pp.69-77
    • /
    • 1997
  • Material handling equipment such as container cranes and transtainer cranes have made larger and faster to improve the efficiency of container handling. As conditions of use in container terminal have become severe, and also the automation level required has become higher. For the high level automation for transtainer crane, the following characteristics have to be developed 1) Container Terminal Operation & Planning System with high efficiency. 2)Autosteering System of transtainer crane with precise position sensing system using image processing and feedback control system. 3)Automatic Position Identification System with transponder. We have developed an AGSS(Automatic Gantry Steering System) of transtainer crane with image processing technology preferentially. In this paper, the system will be introduced.

  • PDF

COMPUTER AIDED SCHECULING MODEL OF MATERIALS HANDSLING IN CHEMICAL ANALYSIS FLOOR

  • Fujino, Yoshikazu;Motomatu, Hiroyoshi;Kurono, Shigeru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.31-34
    • /
    • 1995
  • The automated chemical analysis shop floor are developed for the environmental pollution problems in our chemical analysis center. This shop floor have the several equipments include weight, pour, dry, heater, boiler, mixture, spectroscopy etc. And the material handling components are made up by the stored stack, conveyore, turntables, robot etc. Computer simulation has been an important tool for these complete design problem. We have designed the arangement of chemical equipments and material flow systems by using the simulator "AutoModII". "AutoMoII" is one of the advanced simulator, CAD-like drawing tools with a powerful, engineering oriented language to model control logic and material flow. The result is the modeling of the chemical analysis system in accurate, three dimensional detail. We could designed the set able layout and scheduling system by using the AutoMoII simulator. AutoMoII simulator.

  • PDF

3D Vision Implementation for Robotic Handling System of Automotive Parts (자동차 부품의 로봇 처리 시스템을 위한 3D 비전 구현)

  • Nam, Ji Hun;Yang, Won Ock;Park, Su Hyeon;Kim, Nam Guk;Song, Chul Ki;Lee, Ho Seong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.60-69
    • /
    • 2022
  • To keep pace with Industry 4.0, it is imperative for companies to redesign their working environments by adopting robotic automation systems. Automation lines are facilitating the latest cutting-edge technologies, such as 3D vision and industrial robots, to outdo competitors by reducing costs. Considering the nature of the manufacturing industry, a time-saving workflow and smooth linkwork between processes is vital. At Dellics, without any additional new installation in the automation lines, only a few improvements to the working process could raise productivity. Three requirements are the development of gripping technology by utilizing a 3D vision system for the recognition of the material shape and location, research on lighting projectors to target long distances and high illumination, and testing of algorithms/software to improve measurement accuracy and identify products. With some of the functional requisites mentioned above, improved robotic automation systems should provide an improved working environment to maximize overall production efficiency. In this article, the ways in which such a system can become the groundwork for establishing an unmanned working infrastructure are discussed.