• Title/Summary/Keyword: Material Evaluations

Search Result 246, Processing Time 0.025 seconds

Suggestions of Movement-Assistive Knee Pad Designs: Focusing on Preference and Satisfaction Evaluations Using Virtual Avatars' Wearing (움직임 보조를 위한 무릎 보호대 디자인 제안: 선호도 및 가상 착용 이미지를 이용한 만족도 평가를 중심으로)

  • Park, Sujin;Koo, Sumin
    • Fashion & Textile Research Journal
    • /
    • v.22 no.3
    • /
    • pp.271-286
    • /
    • 2020
  • This study evaluated designs via the consumers' function and design preferences survey for using product design images, virtual avatar wearing images and product explanations that identified consumers' function and design preferences for knee protection pads as well as to develop movement assistive knee pad designs. We developed Design A for men and Design B for women. For Design A, the front of the knee supports muscles and alleviates pain with a hole. Mesh material with good ventilation was applied to enhance wearing comfort. The color was achromatic for a modern style, and the hook fastener and loops enabled easy wear and removal of the pad while controlling size and pressure strength. For Design B, taping details seamlessly support muscles in the knee area with fabrics less than 0.1 cm thick and with long sleeves in the diverse sizes. The design's satisfaction assessment showed that potential consumers were satisfied with Design A and Design B for overall design and functional features. Over 77% wanted to use/wear and purchase designs; in addition, over 78% expected it would help with walking and relieve knee pain. The results can be helpful for designers when deciding designs for manufacturing and commercializing kneepad products.

Quality Characteristics of Seolgiddeok added with Whey Protein Concentrate (WPC) Powder (WPC 분말이 첨가된 설기떡의 품질 특성)

  • Kim, Chan-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.3
    • /
    • pp.436-445
    • /
    • 2015
  • The effects of substituting whey protein concentrate (WPC) powder for rice flour in the preparation of seolgiddeok were determined by objective and subjective tests. Milk whey is drained from milk curd as a by-product of the cheese manufactureing process. Whey protein is known as a good nutritional source and is a functional material for many processed foods. WPC contains more than 80% whey protein. The moisture content decreased gradually during storage and the decrease in moisture was less in the control than in the WPC powder substituted groups. The color lightness (L) decreased significantly as the amount of WPC powder increased, wherease redness (a) and yellowness (b) both increased. Texture analyses revealed that the hardness, chewiness, gumminess and adhesiveness of seolgiddeok tended to increase in proportion to the amount of WPC powder in the formula. Seolgiddeok gelatinization was investigated by amylographing. Initial pasting temperature, peak viscosity, hot pasting viscosity and breakdown were low in seolgiddeok prepared with WPC powder substituted for rice flour. Setback had the lowest value in the control. Sensory evaluations revealed that, seolgiddeok prepared with 3% WPC powder had the highest overall acceptability score. These results indicated that WPC seolgiddeok with 3% WPC powder has the best quality.

Reliability Testing and Materials Evaluation of Si Sub-Mount based LED Package (실리콘 서브 마운틴 기반의 LED 패키지 재료평가 및 신뢰성 시험)

  • Kim, Young-Pil;Ko, Seok-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.1-10
    • /
    • 2015
  • The light emitting diodes(LED) package of new structure is proposed to promote the reliability and lifespan by maximize heat dissipation occurred on the chip. We designed and fabricated the LED packages mixing the advantages of chip on board(COB) based on conventional metal printed circuit board(PCB) and the merits of Si sub-mount using base as a substrate. The proposed LED package samples were selected for the superior efficiency of the material through the sealant properties, chip characteristics, and phosphor properties evaluations. Reliability test was conducted the thermal shock test and flux rate according to the usage time at room temperature, high-temperature operation, high-temperature operation, high-temperature storage, low-temperature storage, high-temperature and high-humidity storage. Reliability test result, the average flux rate was maintained at 97.04% for each items. Thus, the Si sub-mount based LED package is expected to be applicable to high power down-light type LED light sources.

A RFID-based Process Improvement Methodology: Packing Process of Medium size Enterprise (RFID를 이용한 공정개선 방안-중소기업의 포장공정 사례 중심)

  • Sohn, Mye;Kim, Won;Kang, Sung-Jae
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.4
    • /
    • pp.67-75
    • /
    • 2007
  • Radio Frequency IDentification(RFID) is in the limelight of fields of military, delivery and library management as an alternative or barcode system. However, it is restricted within product manufacturing, sales and delivery. In this paper, we apply RFID technology into process, especially packing process management to gauge RFID applicability. To verify beneficial features of RFID, we simulate RFID-adopted packing process. As a result, we demonstrate the effectiveness of a RFID-based Process Improvement In manufacturing process. The results of performance evaluations demonstrate that the proposed RFID-based Process Improvement reduces the labour time, labour cost and material cost. Furthermore, we analyze the validity of RFID-based Process Improvement by RFID cost.

  • PDF

Parametric Design Considerations for Lifting Lug Structure on Ship Block (선박블록 탑재용 러그구조의 파라메트릭 설계 고찰)

  • Ham, Juh-Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.101-107
    • /
    • 2011
  • In view of the importance of material reduction because of the jump in oil and steel prices, structural design studies for lifting lugs were performed. Hundreds of thousands of such lifting lug structures are needed every year for ship construction. A direct design study was reviewed using the developed design system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. In order to understand the design efficiency and convenience of a lug structure, parametric studies for prototype lug shapes were performed using the developed design system. From these design studies, various patterns of design parameters for the lug structure according to changes in the main plate length were examined. Based on these parametric study results, design guides were developed for more efficiently suggesting structural data for enormous lug structures. Additionally, a more detailed structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for a lug structure.

Consideration of the Lifting Lug Structure using the Hybrid Structural Design System (하이브리드 구조설계 시스템을 이용한 선박블록 탑재용 러그구조 고찰)

  • Ham, Juh-Hyeok;Kim, Dong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.104-109
    • /
    • 2009
  • In the view of the importance of material reduction due to the jump in oil and steel prices, an optimized structural system for lifting lugs was developed. Such a system is needed hundreds of thousands of times a year. A direct design process was added to this developed optimized system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. In order to verify the system efficiency and convenience, several new prototype lug shapes were suggested using the developed system. From these research results, it was found that the slope of the main plate of the lug structure has a tendency to move from about 45 degrees to about 60 degrees and the design weight was reduced from an initial value of about 32kgf to about $15{\sim}19kg_f$ after the redesign. Based on these initial research results, an efficient reduction in steel weight was expected considering the enormous consumption of lug structures per year. Additionally, a more detail structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for a lug structure.

A Study on the Micro-mechanical Characteristics of Titanium Metal Matrix Composites (티타늄 금속기 복합재료의 미시-기계적 특성에 관한 연구)

  • 하태준;김태원
    • Composites Research
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • Vacuum hot pressing has been used for the development of titanium metal matrix composites using foil-fiber-foil technique. Subsequent micro-mechanical characteristics of the composites are then investigated by means of several experimental methods. The levels of consolidation, together with mechanism based failure processes of the materials have been analyzed by employing a thermo-acoustic emission technique. As shown by the results, fiber strength degradation occurs during the consolidation, and particularly residual stresses results from the thermal expansion mismatch between fiber and matrix materials during cooling process are incorporated in the changes of mechanical properties of the finished products. In industrial applications, both qualitative and quantitative evaluations of the material-mechanical characteristics are particularly important, and therefore must be included in process development. The present paper represents a methodology by which this can be achieved.

Stress Corrosion Cracking Susceptibility Evaluation by Small Punch Test (소형펀치시험법에 의한 응력부식균열 감수성평가에 관한 연구)

  • 유효선;이송인;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2033-2042
    • /
    • 1993
  • In conventional SCC susceptibility test, there are constant strain test, constant load test, slow strain rate test(SSRT) and K$_{ISCC}$ test. Among them, the SSRT method is much more aggressive in producing SCC than the other tests, so that the test time of it is considerably reduced. But this SSRT method has mostly been worked using the uniaxial tensile specimen untill now. Therefore, the SSRT method using the tensile specimen(Ten-SSRT) has much difficulty in SCC susceptibility evaluation of a localized region like weldment and the advantage material of high order. Recentely, the small punch(SP) test method using miniaturized small specimen is the very effective test method for fracture strength evaluation of a localized region like weldment and fusion reactor wall irradiated in the nuclear power plant. This paper investigated the possibility of SCC susceptibility evaluation by the SP-SSRT method using the miniaturized small specimen. Therefore, we obtained the result that the SP-SSRT had the possibility for the evaluations of SCC susceptibility for shorter time to corrosive environment compare to Ten-SSRT which was conventional method.

The Development of a Qualitative Psychological Assessment of Bibliotherapy and the Examination of it Efficacy (독서치료 효과 측정을 위한 질적 심리평가도구 개발에 관한 연구)

  • Lim, Seong-Gwan
    • Journal of Korean Library and Information Science Society
    • /
    • v.45 no.3
    • /
    • pp.141-168
    • /
    • 2014
  • Public libraries and the Library & Information Sciences departments at Korean universities are increasingly interested in the application of a variety of bibliotherapy methods. Bibliotherapy serves as a therapy to understand a client and participants basic material sources and the effects of that particular treatment (necessary for program verification of psychological tools utilized). Its design is based both on literature selection and employed activities tools. Currently, bibliotherapy has been used mainly as a method to understand and diagnose a client and participants using simple and uniform questions. The development of appropriate and, possibly, additional assessment tools and report forms required for bibliotherapy evaluations in this study will be applied to actual case scenarios to determine the validity of this program and/or tools.

A Study on the Light Weighting of APU through Structural Analysis (구조해석을 통한 보조발전기 경량화에 관한 연구)

  • Kim, Hye-Eun;Kim, Jin-Hoon;Noh, Sang-Wan;Kim, Byeong-Ho;Baek, Hyun-Moo
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.895-910
    • /
    • 2019
  • Purpose: The purpose of this study is to lighten the APU (Auxiliary Power Unit) structure of the KAAV (Korea Assault Amphibious Vehicle) through structural analysis. Methods: Commercially-available program (MIDAS.NFX) was used for finite element analysis. Frequency response analysis was performed through linear static and mode analyses to verify the structural stability according to the change of the structural materials. Results: Numerical simulation (linear static, mode and frequency response analyses) results showed that the safety factor of the APU was over 1.5 even under the worst case conditions. The APU made by aluminum structures was expected to be available in the military field, since every requirements in the KDS (Korean Defense Specifications) was fulfilled during the various tests and evaluations. Conclusion: The structural analysis was verified that the structural stability of the APU structure of the KAAV after change of the structural material.