• Title/Summary/Keyword: Matensite

Search Result 4, Processing Time 0.019 seconds

Spalling of the Oxide Scales Foemed on Stainless Steels During Cooling

  • Saeki, Isao;Ogama, Tetsuro;Furuichi, Ryusaburo;Kikkawa, Shinichi
    • Corrosion Science and Technology
    • /
    • v.2 no.5
    • /
    • pp.225-232
    • /
    • 2003
  • High temperature oxidation of SUS430 and SUS304 stainless steels in 16.7 kPa $O_2$ - 20.3 kPa $H_2O$ - balanced N2 atmosphere at 1273 K was studied focused on the scale spalling during cooling after an isothermal oxidation. Spalling of the oxide scale during cooling occurred only for SUS304 stainless steel. The oxide scale was composed of two layers and they detached at the interface between them. The reason for the spalling could not be explained only by thermal stresses applied to the specimen during heating and cooling. A new mechanism for scale spalling was proposed based on combination of thermal stresses and thermal shock caused by a fast Martensite transformation of substrate metal.

Effect of Cooling Rate on the Behavior of the Embrittlement in Zircaloy-4 Cladding (냉각속도가 지르칼로이-4 피복관의 취성에 미치는 영향)

  • Kim, Jun Hwan;Lee, Myoung Ho;Choi, Byoung Kwon;Jeong, Yong Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.2
    • /
    • pp.112-118
    • /
    • 2005
  • Study was focused on the effect of the cooling rate on the embrittlement behavior of Zircaloy-4 cladding simulated Loss Of Coolant Accident (LOCA) environment. Claddings were oxidized at given temperature and given time followed by various water quenching in the range of $0.6^{\circ}C$ and $100^{\circ}C$ per second. Cladding failed after water quenching above the threshold oxidation. Threshold oxidation was decreased as the cooling rate increased, which is due to the matensite structure formed during fast cooling rate.

Effect of Isochronic Aging on Transformation Behavior in Ti-50.85at%Ni Alloy (Ti-50.85atNi 합금의 변태거동 및 형상기억특성 미치는 시효처리의 영향)

  • Kim, J.I.;Sung, J.H.;Kim, Y.H.;Lee, J.H.;Miyazaki, S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • Effect of isochronic aging on transformation behavior of Ti-50.85at%Ni alloy were investigated by differential scanning calorimeter (DSC). The martensitic transformation temperature increases with increasing annealing temperature until reaching a maximum, and then decreases with further increasing annealing temperature. This can be rationalized by interaction between the distribution of $Ti_3Ni_4$ precipitates and Ni content in the matrix. The R-phase transformation temperature increases with increasing annealing temperature until reaching a maximum, and then decreases with a further increase of annealing temperature. This is attributed to the change of Ni content in the matrix caused by precipitation of $Ti_3Ni_4$. The occurrence of the multiple-stage martensitic and R-phase transformation is attributed to precipitation-induced inhomogeneity of the matrix, both in terms of composition and of internal stress fields.

Microstructure and Hardness Distributions of $CO_2$ Lser Hrdened 12%-Cr Seel (12%-Cr 강의 $CO_2$ 레이저 표면경화에서 금속조직과 경도분포)

  • 김재도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1861-1868
    • /
    • 1992
  • Laser beam hardening of 12%-Cr steel has been evaluated by using a continuous wave 3kW co$_{2}$ laser with a hardening mirror set. Experiment was performed on the hardening condition with a laser power of 2.85kW and travel speed of 1.0 and 1.5m/min. Multi passes have been also tried to find the hardening characteristics of partly overlapped zone. The black paint to use at high temperature was adopted to increase the absorptivity of laser beam energy with the wavelength of 10.6.mu.m at the surface of base metal. The microstructure of the hardened layers was observed by using a light microscopy, SEM and TEM. A fine Lamellar martensite formed in the hardened zones exhibits very high Vickers microhardness of 600Hv, whereas the tempered martensite distributes in the base metal with Vickers microhardness of 240Hv.It has been found that laser hardening with multi passes showed no significant drop of the hardness between adjacent passes.