• Title/Summary/Keyword: Matching score-level fusion

Search Result 6, Processing Time 0.026 seconds

Finger Vein Recognition based on Matching Score-Level Fusion of Gabor Features

  • Lu, Yu;Yoon, Sook;Park, Dong Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.2
    • /
    • pp.174-182
    • /
    • 2013
  • Most methods for fusion-based finger vein recognition were to fuse different features or matching scores from more than one trait to improve performance. To overcome the shortcomings of "the curse of dimensionality" and additional running time in feature extraction, in this paper, we propose a finger vein recognition technology based on matching score-level fusion of a single trait. To enhance the quality of finger vein image, the contrast-limited adaptive histogram equalization (CLAHE) method is utilized and it improves the local contrast of normalized image after ROI detection. Gabor features are then extracted from eight channels based on a bank of Gabor filters. Instead of using the features for the recognition directly, we analyze the contributions of Gabor feature from each channel and apply a weighted matching score-level fusion rule to get the final matching score, which will be used for the last recognition. Experimental results demonstrate the CLAHE method is effective to enhance the finger vein image quality and the proposed matching score-level fusion shows better recognition performance.

A study of using quality for Radial Basis Function based score-level fusion in multimodal biometrics (RBF 기반 유사도 단계 융합 다중 생체 인식에서의 품질 활용 방안 연구)

  • Choi, Hyun-Soek;Shin, Mi-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.192-200
    • /
    • 2008
  • Multimodal biometrics is a method for personal authentication and verification using more than two types of biometrics data. RBF based score-level fusion uses pattern recognition algorithm for multimodal biometrics, seeking the optimal decision boundary to classify score feature vectors each of which consists of matching scores obtained from several unimodal biometrics system for each sample. In this case, all matching scores are assumed to have the same reliability. However, in recent research it is reported that the quality of input sample affects the result of biometrics. Currently the matching scores having low reliability caused by low quality of samples are not currently considered for pattern recognition modelling in multimodal biometrics. To solve this problem, in this paper, we proposed the RBF based score-level fusion approach which employs quality information of input biometrics data to adjust decision boundary. As a result the proposed method with Qualify information showed better recognition performance than both the unimodal biometrics and the usual RBF based score-level fusion without using quality information.

Using Keystroke Dynamics for Implicit Authentication on Smartphone

  • Do, Son;Hoang, Thang;Luong, Chuyen;Choi, Seungchan;Lee, Dokyeong;Bang, Kihyun;Choi, Deokjai
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.968-976
    • /
    • 2014
  • Authentication methods on smartphone are demanded to be implicit to users with minimum users' interaction. Existing authentication methods (e.g. PINs, passwords, visual patterns, etc.) are not effectively considering remembrance and privacy issues. Behavioral biometrics such as keystroke dynamics and gait biometrics can be acquired easily and implicitly by using integrated sensors on smartphone. We propose a biometric model involving keystroke dynamics for implicit authentication on smartphone. We first design a feature extraction method for keystroke dynamics. And then, we build a fusion model of keystroke dynamics and gait to improve the authentication performance of single behavioral biometric on smartphone. We operate the fusion at both feature extraction level and matching score level. Experiment using linear Support Vector Machines (SVM) classifier reveals that the best results are achieved with score fusion: a recognition rate approximately 97.86% under identification mode and an error rate approximately 1.11% under authentication mode.

Heterogeneous Face Recognition Using Texture feature descriptors (텍스처 기술자들을 이용한 이질적 얼굴 인식 시스템)

  • Bae, Han Byeol;Lee, Sangyoun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.3
    • /
    • pp.208-214
    • /
    • 2021
  • Recently, much of the intelligent security scenario and criminal investigation demands for matching photo and non-photo. Existing face recognition system can not sufficiently guarantee these needs. In this paper, we propose an algorithm to improve the performance of heterogeneous face recognition systems by reducing the different modality between sketches and photos of the same person. The proposed algorithm extracts each image's texture features through texture descriptors (gray level co-occurrence matrix, multiscale local binary pattern), and based on this, generates a transformation matrix through eigenfeature regularization and extraction techniques. The score value calculated between the vectors generated in this way finally recognizes the identity of the sketch image through the score normalization methods.

Risk Factors for the Development and Progression of Atlantoaxial Subluxation in Surgically Treated Rheumatoid Arthritis Patients, Considering the Time Interval between Rheumatoid Arthritis Diagnosis and Surgery

  • Na, Min-Kyun;Chun, Hyoung-Joon;Bak, Koang-Hum;Yi, Hyeong-Joong;Ryu, Je Il;Han, Myung-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.6
    • /
    • pp.590-596
    • /
    • 2016
  • Objective : Rheumatoid arthritis (RA) is a systemic disease that can affect the cervical spine, especially the atlantoaxial region. The present study evaluated the risk factors for atlantoaxial subluxation (AAS) development and progression in patients who have undergone surgical treatment. Methods : We retrospectively analyzed the data of 62 patients with RA and surgically treated AAS between 2002 and 2015. Additionally, we identified 62 patients as controls using propensity score matching of sex and age among 12667 RA patients from a rheumatology registry between 2007 and 2015. We extracted patient data, including sex, age at diagnosis, age at surgery, disease duration, radiographic hand joint changes, and history of methotrexate use, and laboratory data, including presence of rheumatoid factor and the C-reactive protein (CRP) level. Results : The mean patient age at diagnosis was 38.0 years. The mean time interval between RA diagnosis and AAS surgery was $13.6{\pm}7.0$ years. The risk factors for surgically treated AAS development were the serum CRP level (p=0.005) and radiographic hand joint erosion (p=0.009). The risk factors for AAS progression were a short time interval between RA diagnosis and radiographic hand joint erosion (p<0.001) and young age at RA diagnosis (p=0.04). Conclusion : The CRP level at RA diagnosis and a short time interval between RA diagnosis and radiographic hand joint erosion might be risk factors for surgically treated AAS development in RA patients. Additionally, a short time interval between RA diagnosis and radiographic hand joint erosion and young age at RA diagnosis might be risk factors for AAS progression.

Development of High-Resolution Fog Detection Algorithm for Daytime by Fusing GK2A/AMI and GK2B/GOCI-II Data (GK2A/AMI와 GK2B/GOCI-II 자료를 융합 활용한 주간 고해상도 안개 탐지 알고리즘 개발)

  • Ha-Yeong Yu;Myoung-Seok Suh
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1779-1790
    • /
    • 2023
  • Satellite-based fog detection algorithms are being developed to detect fog in real-time over a wide area, with a focus on the Korean Peninsula (KorPen). The GEO-KOMPSAT-2A/Advanced Meteorological Imager (GK2A/AMI, GK2A) satellite offers an excellent temporal resolution (10 min) and a spatial resolution (500 m), while GEO-KOMPSAT-2B/Geostationary Ocean Color Imager-II (GK2B/GOCI-II, GK2B) provides an excellent spatial resolution (250 m) but poor temporal resolution (1 h) with only visible channels. To enhance the fog detection level (10 min, 250 m), we developed a fused GK2AB fog detection algorithm (FDA) of GK2A and GK2B. The GK2AB FDA comprises three main steps. First, the Korea Meteorological Satellite Center's GK2A daytime fog detection algorithm is utilized to detect fog, considering various optical and physical characteristics. In the second step, GK2B data is extrapolated to 10-min intervals by matching GK2A pixels based on the closest time and location when GK2B observes the KorPen. For reflectance, GK2B normalized visible (NVIS) is corrected using GK2A NVIS of the same time, considering the difference in wavelength range and observation geometry. GK2B NVIS is extrapolated at 10-min intervals using the 10-min changes in GK2A NVIS. In the final step, the extrapolated GK2B NVIS, solar zenith angle, and outputs of GK2A FDA are utilized as input data for machine learning (decision tree) to develop the GK2AB FDA, which detects fog at a resolution of 250 m and a 10-min interval based on geographical locations. Six and four cases were used for the training and validation of GK2AB FDA, respectively. Quantitative verification of GK2AB FDA utilized ground observation data on visibility, wind speed, and relative humidity. Compared to GK2A FDA, GK2AB FDA exhibited a fourfold increase in spatial resolution, resulting in more detailed discrimination between fog and non-fog pixels. In general, irrespective of the validation method, the probability of detection (POD) and the Hanssen-Kuiper Skill score (KSS) are high or similar, indicating that it better detects previously undetected fog pixels. However, GK2AB FDA, compared to GK2A FDA, tends to over-detect fog with a higher false alarm ratio and bias.