최근의 네트워크 침입탐지 시스템에서는 침입이 의심되는 패킷을 나타내는 데 정규표현식이 사용되고 있다. 고속 네트워크를 통해서 입력되는 패킷을 실시간으로 검사하기 위해서는 하드웨어 기반 패턴 매칭이 필수적이며 변화되는 패턴 규칙을 다루기 위해서는 FPGA와 같은 재구성 가능한 디바이스를 사용하는 것이 바람직하다. FPGA의 동작 속도 제한으로 바이트 단위의 패킷 검사로는 실시간 검사를 할 수 없는 경우에 이를 해결하기 위해서 여러 바이트 단위로 검사하는 것이 필요하다. 본 논문에서는 정규표현식 패턴 매칭을 n바이트 단위로 처리하는 하드웨어의 구조와 설계 방법을 제시하고 이에 대한 패턴 매칭 회로 생성기를 구현한다. Snort 규칙에 대해 FPGA로 합성된 하드웨어는 n=4일 때에 규칙에 따라서 $2.62{\sim}3.4$배의 처리 속도 향상을 보였다.
The matching probability P(ο/$\lambda$), of the signal sequence(ο) observed for a finite time interval with a HMM (Hidden Markov Model $\lambda$) indicates the probability that signal comes from the given model. By utilizing the fact that the probability represents matching score of the observed signal with the model we can recognize an unknown signal pattern by comparing the magnitudes of the matching probabilities with respect to the known models. Because the algorithm however uses floating point variables during the computing process hardware implementation of the algorithm requires floating point units. This paper proposes an integer algorithm which uses positive integer numbers rather than float point ones to compute the matching probability so that we can economically realize the algorithm into hardware. The algorithm makes the model parameters integer numbers by multiplying positive constants and prevents from divergence of data through the normalization of variables at each step. The final equation of matching probability is composed of constant terms and a variable term which contains logarithm operations. A scheme to make the log conversion table smaller is also presented. To analyze the qualitive characteristics of the proposed algorithm we attatch simulation result performed on two groups of 10 hypothetic models respectively and inspect the statistical properties with repect to the model order the magnitude of scaling constants and the effect of the observation length.
본 논문에서는 비젼을 이용한 영상처리 기술을 기반으로 비접촉식 미세 측정 광학기에 의해 측정된 이미지를 템플릿 매칭과 B-Spline 보간법에 의해 보다 빠르고, 정밀한 복원 기법을 제안한다. 이를 위해 먼저 각각의 이미지로부터 매칭 템플릿과 피 매칭 템플릿을 검출한다. 그런 다음 기준면으로부터 두 이미지의 중첩되는 부분의 롤, 피치, 요 오차를 보정하여 정합시킨다. 그리고 B-Spline 보간법에 의해 정합된 부분을 연속화한다. 마지막으로, 제안된 방법은 실험을 통해 그 응용 가능성을 증명한다.
In computational biology, desired patterns are searched in large text databases, and an exact match is preferable. Classical benchmark algorithms obtain competent solutions for pattern matching in O (N) time, whereas quantum algorithm design is based on Grover's method, which completes the search in $O(\sqrt{N})$ time. This paper briefly explains existing quantum algorithms and defines their processing limitations. Our initial work overcomes existing algorithmic constraints by proposing the quantum-based combined exact (QBCE) algorithm for the pattern-matching problem to process exact patterns. Next, quantum random access memory (QRAM) processing is discussed, and based on it, we propose the QRAM processing-based exact (QPBE) pattern-matching algorithm. We show that to find all t occurrences of a pattern, the best case time complexities of the QBCE and QPBE algorithms are $O(\sqrt{t})$ and $O(\sqrt{N})$, and the exceptional worst case is bounded by O (t) and O (N). Thus, the proposed quantum algorithms achieve computational speedup. Our work is proved mathematically and validated with simulation, and complexity analysis demonstrates that our quantum algorithms are better than existing pattern-matching methods.
Recently, traditional trade in the global trade market has stagnated in the aftermath of the US-China trade war and the coronavirus (COVID-19) pandemic. However, the global e-commerce market is growing rapidly, presenting a new opportunity for exports. To examine the effect of an online matching and logistics system on reverse overseas direct purchase and the mediating effect of reliability, this study conducted a questionnaire survey on 320 employees in a Korean trade company from March 10 to April 30, 2018. The study model's goodness of fit was tested, and an analysis was performed using the AMOS statistical package. The online matching and logistics system were found to have a positive effect on reverse overseas direct purchase. Furthermore, results revealed that while a country's reliability mediated online matching and reverse overseas direct purchase, it did not mediate the logistics system. These results mean that online matching is affected by a country's reliability in overseas consumers' buying decision process. This study provides implications for the future directions of export companies and national policies to promote reverse overseas direct purchase. Future research including more countries and companies would be able to make further contributions toward the development of the Korean cross-border e-commerce industry.
영역기반 스테레오 매칭 분야에서 최근 인간의 시각체계(Human Visual System)에 기반하여 영역내의 밝기값과 거리값에 따라 적응적으로 가중치를 부여하는 적응적 영역 가중치(Adaptive Support-Weight, ASW) 방법이 좋은 매칭 결과를 보이고 있다. 그러나 이 방법은 좋은 매칭 결과에 비해서 많은 연산비용을 필요로 하게 되고, 매칭의 실시간 시스템화에 큰 장애요소로 작용한다. 이에 Bilateral filter 수식으로 근사화 후 Integral Histogram 기법을 적용하여 영역 윈도우의 크기에 상관없이 상수 시간 O(1) 내에 매칭을 수행하는 연구가 진행되었다. 하지만 이 방법은 근사화 과정에서의 원 ASW 수식을 왜곡하기 때문에 매칭 정확도의 손실을 가져오게 된다. 본 논문에서는 적응적 영역 가중치 알고리즘의 매칭 정확도를 유지하면서 적응적 영역 가중치 알고리즘의 계산 비용을 줄이는 알고리즘을 제안한다. 이를 위해 영역내의 픽셀을 그룹화하여 근사화된 매칭을 수행하는 Sub-Block 방법과 영상의 에지 정보에 따라 적응적으로 시차 탐색 범위를 조정하는 방법을 제안한다. 결과적으로 제안된 기법은 기존 방식보다 좋은 매칭 정확도를 유지하면서도 효율적으로 계산 수행 시간을 줄이게 된다.
본 연구는 영상정합의 주요 과정에 라이다데이터를 적용함으로서 정합과정의 효율성 및 결과의 신뢰도를 향상시키기 위한 전략 및 방법을 개발하는 것을 목표로 하였다. 영상정합은 정합대상객체를 선택하고, 이와 일치된 정합객체를 검색하며, 정합결과의 품질을 평가하는 과정으로 이루어진다. 본 연구는 이러한 영상정합의 각 과정에 라이다데이터를 적용하는 방법을 제시하였다. 제안된 방법을 중해상도 항공 디지털 영상과 이와 동시에 관측된 라이다데이터를 적용하여 실험하였다. 적용된 결과를 라이다데이터 대신에 가상의 수평면을 이용하는 기존의 방법과 대비하여 분석하였다. 그 결과, 제안된 방법이 기존의 방법보다 향상된 성능을 보이는 것을 확인할 수 있었다. 본 연구의 결과는 현존하는 상업용 디지털영상정합자동화 프로그램의 정합성능을 개선하고, 영상정합의 결과를 라이다데이터와 결합하여 생성된 DEM의 품질을 제고하는 것에 기여한다.
한영 혼용문에서 번역된 전문용어 등을 사용할 때, 이해를 돕기 위해 그 뒤의 괄호 안에 원어 풀이를 함께 쓰는 경우가 많다. 본 논문에서는 괄호가 사용된 구가 대역어구 관계인지를 판단하고, 어느 범위까지 대역어구인지를 기본사전을 이용하여 확률적으로 계산하고 인식하는 방법을 제시한다. 특히, 사전에 표제어로서 혹은 대역어로서 존재하지 않는 단어들을 처리하기 위해 음운유사도 일치, 대역어 부분일치의 방법과 복합어 처리를 위해 부분일치 방법을 새로 제안하였다. 각 방법들을 단계별로 실험하여 0.4F값$(\alpha$를 0.4로 설정한 F값)으로 측정한 결과, 기본 실험 방법인 사전 대역어 완전일치방법의 경우 23.8%인데 비해, 대역어 부분일치와 음운유사도 일치를 흔합한 방법이 75.9%, 복합어 처리를 추가한 방법이 77.3%의 값을 보여 성능이 최고 3.25배 향상되었다.
기존의 스테레오 정합 알고리즘은 크게 명암기반기법과 특징기반기법의 두 가지로 나눌 수 있다. 그리고, 각 기법은 그들 나름대로의 장단점을 갖는다. 본 논문은 이 두 기법을 결합하는 새로운 알고리즘을 제안한다. 본 논문에서는 물체모델링을 목적으로 하기 때문에 배경을 제거하여 정합하는 방법을 사용한다. 이를 위해, 정합요소들과 정합유사함수가 정의되고, 정합유사함수는 두 기법사이의 장단점을 하나의 인수에 의해 조절한다. 그 외에도 거리차 지도의 오류를 제거하는 coarse-to-fine기법, 폐색문제를 해결하는 다중윈도우 기법을 사용하였고, 물체의 표면형태를 알아내기 위해 morphological closing 연산자를 이용하여 물체와 배경을 분리하는 방법을 제안하였다. 이러한 기법들을 기반으로 하여 여러가지 영상에 대해 실험을 수행하였으며, 그 결과들은 본 논문이 제안하는 기법의 효율성을 보여준다. 정합의 결과로 만들어지는 거리차 지도는 3차원 모델링을 통해 가상공간상에서 보여지도록 하였다.Abstract Classical stereo matching algorithms can be classified into two major areas; intensity-based and feature-based stereo matching. Each technique has advantages and disadvantages. This paper proposes a new algorithm which merges two main matching techniques. Since the goal of our stereo algorithm is in object modeling, we use images for which background is removed. Primitives and a similarity function are defined. The matching similarity function selectively controls the advantages and disadvantages of intensity-based and feature-based matching by a parameter.As an additional matching strategy, a coarse-to-fine method is used to remove a errorneous data on the disparity map. To handle occlusions, multiple windowing method is used. For finding the surface shape of an object, we propose a method that separates an object and the background by a morphological closing operator. All processes have been implemented and tested with various image pairs. The matching results showed the effectiveness of our method. From the disparity map computed by the matching process, 3D modeling is possible. 3D modeling is manipulated by VRML(Virtual Reality Manipulation Language). The results are summarized in a virtual reality space.
Objective: Iris pattern recognition system is well developed and practiced in human, however, there is a scarcity of information on application of iris recognition system in animals at the field conditions where the major challenge is to capture a high-quality iris image from a constantly moving non-cooperative animal even when restrained properly. The aim of the study was to validate and identify Black Bengal goat biometrically to improve animal management in its traceability system. Methods: Forty-nine healthy, disease free, 3 months±6 days old female Black Bengal goats were randomly selected at the farmer's field. Eye images were captured from the left eye of an individual goat at 3, 6, 9, and 12 months of age using a specialized camera made for human iris scanning. iGoat software was used for matching the same individual goats at 3, 6, 9, and 12 months of ages. Resnet152V2 deep learning algorithm was further applied on same image sets to predict matching percentages using only captured eye images without extracting their iris features. Results: The matching threshold computed within and between goats was 55%. The accuracies of template matching of goats at 3, 6, 9, and 12 months of ages were recorded as 81.63%, 90.24%, 44.44%, and 16.66%, respectively. As the accuracies of matching the goats at 9 and 12 months of ages were low and below the minimum threshold matching percentage, this process of iris pattern matching was not acceptable. The validation accuracies of resnet152V2 deep learning model were found 82.49%, 92.68%, 77.17%, and 87.76% for identification of goat at 3, 6, 9, and 12 months of ages, respectively after training the model. Conclusion: This study strongly supported that deep learning method using eye images could be used as a signature for biometric identification of an individual goat.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.