• Title/Summary/Keyword: Matching filter

Search Result 410, Processing Time 0.022 seconds

Wavelet Shift Keying System Using a Binary Matching Filter (2진 정합필터를 이용한 웨이브릿 편이변조 시스템)

  • Oh, Hyoung-Jin;Jeong, Tae-Il;Lee, Tae-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.1933-1938
    • /
    • 2008
  • There are the frequency shift keying(FSK), phase shift keying(PSK) and amplitude shift keying(ASK) in the conventional digital communications method. In this parer, We proposed the algorithm for wavelet shift keying system using a binary matching filter in the digital communication. Wavelet shift keying system are used to a scaling function(low frequency) and wavelet(high frequency) coefficients. The binary data is encoded by modulator which assigned the scaling function to 1(one), and wavelet to zero(0). Wavelet shift keying of the conventional method needs to a post-processing for the decoding. In this paper, wavelet shift keying signal is reconstructed by the decoder using a binary matching filter. So, it was able to the decoding without the post-processing. It was demonstrated by the experiment that the proposed algorithm is a validity.

Integrated Automatic Pre-Processing for Change Detection Based on SURF Algorithm and Mask Filter (변화탐지를 위한 SURF 알고리즘과 마스크필터 기반 통합 자동 전처리)

  • Kim, Taeheon;Lee, Won Hee;Yeom, Junho;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.209-219
    • /
    • 2019
  • Satellite imagery occurs geometric and radiometric errors due to external environmental factors at the acquired time, which in turn causes false-alarm in change detection. These errors should be eliminated by geometric and radiometric corrections. In this study, we propose a methodology that automatically and simultaneously performs geometric and radiometric corrections by using the SURF (Speeded-Up Robust Feature) algorithm and the mask filter. The MPs (Matching Points), which show invariant properties between multi-temporal imagery, extracted through the SURF algorithm are used for automatic geometric correction. Using the properties of the extracted MPs, PIFs (Pseudo Invariant Features) used for relative radiometric correction are selected. Subsequently, secondary PIFs are extracted by generated mask filters around the selected PIFs. After performing automatic using the extracted MPs, we could confirm that geometric and radiometric errors are eliminated as the result of performing the relative radiometric correction using PIFs in geo-rectified images.

Tuple Pruning Using Bloom Filter for Packet Classification (패킷 분류를 위한 블룸 필터 이용 튜플 제거 알고리즘)

  • Kim, So-Yeon;Lim, Hye-Sook
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.3
    • /
    • pp.175-186
    • /
    • 2010
  • Due to the emergence of new application programs and the fast growth of Internet users, Internet routers are required to provide the quality of services according to the class of input packets, which is identified by wire-speed packet classification. For a pre-defined rule set, by performing multi-dimensional search using various header fields of an input packet, packet classification determines the highest priority rule matching to the input packet. Efficient packet classification algorithms have been widely studied. Tuple pruning algorithm provides fast classification performance using hash-based search against the candidate tuples that may include matching rules. Bloom filter is an efficient data structure composed of a bit vector which represents the membership information of each element included in a given set. It is used as a pre-filter determining whether a specific input is a member of a set or not. This paper proposes new tuple pruning algorithms using Bloom filters, which effectively remove unnecessary tuples which do not include matching rules. Using the database known to be similar to actual rule sets used in Internet routers, simulation results show that the proposed tuple pruning algorithm provides faster packet classification as well as consumes smaller memory amount compared with the previous tuple pruning algorithm.

Design of Dual-Band Power Amplifier for the RFID Frequency-Band (RFID 대역에서 동작하는 이중 대역 전력증폭기 설계)

  • Kim, Jae-Hyun;Hwang, Sun-Gook;Park, Hyo-Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.376-379
    • /
    • 2014
  • In this paper, we designed more improving a dual-band power amplifier than the transceiver of RFID reader that operates at 910 MHz and 2.45 GHz. A dual-band power amplifier has two circuits. One matching circuit is composed lumped element in the band of 910 MHz. The other matching circuit using distributed element in the high band of 2.45 GHz. So, this dual-band power amplifier works as Band Rejection Filter in the band of 910 MHz but in the high band of 2.45 GHz works as Band Pass Filter. Therefore, this is composed a microstrip transmission line. A power amplifier is showed gains of 8 dB output power at 910 MHz and 1.5 dB output power at 2.45 GHz. If input power is 10 dBm, both of bands output 20 dBm.

A Packet Classification Algorithm Using Bloom Filter Pre-Searching on Area-based Quad-Trie (영역 분할 사분 트라이에 블룸 필터 선 검색을 사용한 패킷 분류 알고리즘)

  • Byun, Hayoung;Lim, Hyesook
    • Journal of KIISE
    • /
    • v.42 no.8
    • /
    • pp.961-971
    • /
    • 2015
  • As a representative area-decomposed algorithm, an area-based quad-trie (AQT) has an issue of search performance. The search procedure must continue to follow the path to its end, due to the possibility of the higher priority-matching rule, even though a matching rule is encountered in a node. A leaf-pushing AQT improves the search performance of the AQT by making a single rule node exist in each search path. This paper proposes a new algorithm to further improve the search performance of the leaf-pushing AQT. The proposed algorithm implements a leaf-pushing AQT using a hash table and an on-chip Bloom filter. In the proposed algorithm, by sequentially querying the Bloom filter, the level of the rule node in the leaf-pushing AQT is identified first. After this procedure, the rule database, which is usually stored in an off-chip memory, is accessed. Simulation results show that packet classification can be performed through a single hash table access using a reasonable sized Bloom filter. The proposed algorithm is compared with existing algorithms in terms of the memory requirement and the search performance.

Stereo Matching For Satellite Images using The Classified Terrain Information (지형식별정보를 이용한 입체위성영상매칭)

  • Bang, Soo-Nam;Cho, Bong-Whan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.1 s.6
    • /
    • pp.93-102
    • /
    • 1996
  • For an atomatic generation of DEM(Digital Elevation Model) by computer, it is a time-consumed work to determine adquate matches from stereo images. Correlation and evenly distributed area-based method is generally used for matching operation. In this paper, we propose a new approach that computes matches efficiantly by changing the size of mask window and search area according to the given terrain information. For image segmentation, at first edge-preserving smoothing filter is used for preprocessing, and then region growing algorithm is applied for the filterd images. The segmented regions are classifed into mountain, plain and water area by using MRF(Markov Random Filed) model. Maching is composed of predicting parallex and fine matching. Predicted parallex determines the location of search area in fine matching stage. The size of search area and mask window is determined by terrain information for each pixel. The execution time of matching is reduced by lessening the size of search area in the case of plain and water. For the experiments, four images which are covered $10km{\times}10km(1024{\times}1024\;pixel)$ of Taejeon-Kumsan in each are studied. The result of this study shows that the computing time of the proposed method using terrain information for matching operation can be reduced from 25% to 35%.

  • PDF

Fuzzy Hardware Implementation using the Hausdorff Distance (Hausdorff Distance를 이용한 퍼지 하드웨어 구현)

  • 김종만;변오성;문성룡
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.147-150
    • /
    • 2000
  • Hausdorff distance(HD) commonly used measures for object matching, and calculates the distance between two point set of pixels in two-dimentional binary images without establishing correspondence. And it is realized as the image filter applying the fuzzy. In this paper, the fuzzy hardware realizes in order to construct the image filter applying HD, also, propose as the method for the noise removal using it in the image. MIN-MAX circuit designs the circuit using MAX-PLUS, and the fuzzy HD hardware results are obtained to the simulation. And then, the previous computer simulation is confirmed to the result by using MATLAB.

  • PDF

Enhanced Block Matching Scheme for Denoising Images Based on Bit-Plane Decomposition of Images (영상의 이진화평면 분해에 기반한 확장된 블록매칭 잡음제거)

  • Pok, Gouchol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.321-326
    • /
    • 2019
  • Image denoising methods based on block matching are founded on the experimental observations that neighboring patches or blocks in images retain similar features with each other, and have been proved to show superior performance in denoising different kinds of noise. The methods, however, take into account only neighboring blocks in searching for similar blocks, and ignore the characteristic features of the reference block itself. Consequently, denoising performance is negatively affected when outliers of the Gaussian distribution are included in the reference block which is to be denoised. In this paper, we propose an expanded block matching method in which noisy images are first decomposed into a number of bit-planes, then the range of true signals are estimated based on the distribution of pixels on the bit-planes, and finally outliers are replaced by the neighboring pixels belonging to the estimated range. In this way, the advantages of the conventional Gaussian filter can be added to the blocking matching method. We tested the proposed method through extensive experiments with well known test-bed images, and observed that performance gain can be achieved by the proposed method.

Design of Broad Band RF Components for Partial Discharge Monitoring System (부분방전 모니터링 시스템을 위한 광대역 RF 소자설계 연구)

  • Lee, Je-Kwang;Ko, Jae-Hyeong;Kim, Koon-Tae;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2286-2292
    • /
    • 2011
  • In this paper we present the design of Low Noise Amplifier(LNA), mixer and filter for RF front-end part of partial discharge monitoring system. The monitoring system of partial discharge in high voltage power machinery is used to prevent many kinds of industrial accidents, and is usually composed of three parts - sensor, RF front-end and digital microcontroller unit. In our study, LNA, mixer and filter are key components of the RF front-end. The LNA consists of common gate and common source-cascaded structure and uses the resistive feedback for broad band matching. A coupled line structure is utilized to implement the filter, of which size is reduced by the meander structure. The mixer is designed using dual gate structure for high isolation between RF and local oscillator signal.

Construction of High-Speed Wavelength Swept Mode-Locked Laser Based on Oscillation Characteristics of Fiber Fabry-Perot Tunable Filter (광섬유 패브리-페로 파장가변 필터의 공진특성에 기반한 고속 파장가변 모드잠김 레이저의 제작)

  • Lee, Eung-Je;Kim, Yong-Pyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1393-1397
    • /
    • 2009
  • A high-speed wavelength swept laser, which is based on oscillation characteristics of a fiber Fabry-Perot tunable filter, is described. The laser is constructed by using a semiconductor optical amplifier, a fiber Fabry-Perot tunable filter, and 3.348 km fiber ring cavity. The wavelength sweeps are repeatatively generated with the repetition period of 61 kHz which is the first parallel oscillation frequency of the Fabry-Perot tunable filter for the low power consumption. Mode-locking is implemented by 3.348 km fiber ring cavity for matching the fundamental of cavity roundtrip time to the sweep period. The wavelength tuning range of the laser is 87 nm(FWHM) and the average output power is 1.284 mW.