KSII Transactions on Internet and Information Systems (TIIS)
/
제14권1호
/
pp.131-147
/
2020
RFID (Radio Frequency Identification) identifies a specific object by radio signals. As the tag provides a unique ID for the purpose of identification, RFID technology effectively solves the ambiguity and occlusion problem that challenges the laser or camera-based approach. This paper proposes an approach to track a moving object based on the integration of RFID and laser ranging information using a particle filter. To be precise, we split laser scan points into different clusters which contain the potential moving objects and calculate the radial velocity of each cluster. The velocity information is compared with the radial velocity estimated from RFID phase difference. In order to achieve the positioning of the moving object, we select a number of K best matching clusters to update the weights of the particle filter. To further improve the positioning accuracy, we incorporate RFID signal strength information into the particle filter using a pre-trained sensor model. The proposed approach is tested on a SCITOS service robot under different types of tags and various human velocities. The results show that fusion of signal strength and laser ranging information has significantly increased the positioning accuracy when compared to radial velocity matching-based or signal strength-based approaches. The proposed approach provides a solution for human machine interaction and object tracking, which has potential applications in many fields for example supermarkets, libraries, shopping malls, and exhibitions.
본 논문에서는 근접 사진측량에 기반하여 모형 토조 내 지반의 변위를 측정하기 위한 연구를 진행하였다. 알루미늄 프레임 및 투명 아크릴로 제작된 실내 모형 토조 내에 토사를 채워 넣고, 하중 재하 장치를 이용한 하중 재하를 통한 토사의 변위를 사진측량 기법으로 측정하였다. 토조 내의 토사는 영상 기반 자동 매칭을 위하여 검은 모래 약 40%, 일반 모래 약 60% 혼합하여 영상 대비의 정도를 높일 수 있도록 계획하였다. 전처리 과정으로서 실험실 카메라 캘리브레이션을 통해 내부표정요소를 도출하였고, 토조 프레임에 배치된 기준점을 이용한 후방교회법을 통해 외부표정요소를 예측하였다. 이후 영상 매칭을 통해 하중 전, 후의 토사 변위 패턴을 측정하였으며, 영상 매칭 시 활용되는 매칭 윈도우 크기 및 영상 스무딩 정도를 변경 적용하여 그 결과를 평가해보았다. 실험 결과, 매칭 윈도우 크기 65×65픽셀의 경우 안정적인 변위 도출이 가능하였으며, 영상 스무딩은 매칭의 과대 오차를 감소하는 효과를 보여주었다. 이를 통해 사진 측량을 통한 토조 내 지반 변위 패턴을 도출할 수 있었다.
본 논문에서는 스테레오 영상 시퀀스에서 스네이크와 변이 정보(disparity information)를 이용한 객체 윤곽 추적 알고리즘을 제안한다. 제안하는 방법은 두 단계로 구성된다. 첫 번째는 변이 공간(disparity space)에서 스네이크 포인트의 모션 정보를 구하여 후보 스네이크 포인트를 결정하고, 두 번째는 후보 스네이크 포인트에 새로 정의한 스네이크 에너지 함수를 적용하여 관심객체의 윤곽을 추적하는 과정으로 구성된다. 제안한 방법은 복잡한 배경에서도 관심객체의 윤곽을 추적할 수 있었고, 실험을 통해 성능을 분석하였다.
This paper presents an Around View Monitoring (AVM) stop-line detection based longitudinal position correction algorithm for automated driving on urban roads. Poor positioning accuracy of low-cost GPS has many problems for precise path tracking. Therefore, this study aims to improve the longitudinal positioning accuracy of low-cost GPS. The algorithm has three main processes. The first process is a stop-line detection. In this process, the stop-line is detected using Hough Transform from the AVM camera. The second process is a map matching. In the map matching process, to find the corrected vehicle position, the detected line is matched to the stop-line of the HD map using the Iterative Closest Point (ICP) method. Third, longitudinal position of low-cost GPS is updated using a corrected vehicle position with Kalman Filter. The proposed algorithm is implemented in the Robot Operating System (ROS) environment and verified on the actual urban road driving data. Compared to low-cost GPS only, Test results show the longitudinal localization performance was improved.
본 논문에서는 교통 모니터링 시스템에 사용할 수 있는 국부 영역에서 차량 검지와 추적을 수행하는 새로운 기법을 제안하다. 차량 검지와 추적은 각 차선에 미리 설정된 영역에서만 이루어진다. 각 차선에 설정된 국부 영역을 에지 특성과 프레임 차이를 이용하여 여러 개의 분할 영역으로 나누고 분할영역의 통계적 특성과 기하학적 특성에 의해 차량, 도로, 그림자와 전조등 영역으로 분류하여 차량을 검출한다. 검출된 차량은 에지 영상의 정합에 의해 국부 영역내에서 추적하여 차량 속도, 길이, 차간 거리와 도로 점유율과 같은 교통 정보를 산출할 수 있다. 배경 영상을 사용하지 않으므로 다양한 조건에서 사용이 가능하고 다양한 기상, 시간대와 장소에서 90.16%의 높은 차량 검출의 정확도를 나타냈다. 동작 환경에서 카메라의 각도, 방향과 조리개 설정이 조정되면 아주 높은 정확도의 교통 모니터링 시스템의 핵심기술로 사용될 수 있을 것으로 기대된다.
최근 시각 기반 인터페이스의 실현을 위해 손 동작 인식 기술 개발의 필요성이 증가하고 있다. 이러한 시각 기반 인터페이스의 입력으로 사용되는 손 동작은 손 모양의 연속적인 변화로 정의되므로, 효율적인 손 모양 인식 알고리즘의 개발은 필수적이다. 본 논문에서는 손 모양 인식 과정 중 빈번히 발생할 수 있는 손의 회전에 의한 인식 성능 저하를 다룬다. 제안하는 방법은 회전에 강인한 손 모양 인식 알고리즘 개발을 위해 손 동작 인식 환경을 고려하여 비디오 내 인접 프레임간의 높은 상관관계를 이용한다. 특히, 정지 영상에 기반한 기존 연구와의 차별 점은 객체 추적에서 사용되는 템플릿 갱신을 손 모양 인식에 도입하였다는 것이다. 제안한 방법의 유효함을 보이기 위해, 손이 좌우로 회전하는 비디오를 입력으로 템플릿 정합 기반의 방법, PCA와 LBP을 제안하는 방법과 비교 실험하였다. 제안한 방법은 일반적인 템플릿 정합 기반의 손 모양 인식보다 22.7%, KL-Transform을 도입한 템플릿 정합보다 14.5%, PCA 보다 10.7%, LBP 보다 4.3%의 성능 개선을 보였다.
Road signs provide important safety information about road and traffic conditions to drivers. Road signs include not only common traffic signs but also warning information regarding unexpected obstacles and road constructions. Therefore, accurate detection and identification of road signs is one of the most important research topics related to safe driving. In this paper, we propose a 3-D vision technique to automatically detect and track road signs in a video sequence which is acquired from a stereo vision camera mounted on a vehicle. First, color information is used to initially detect the sign candidates. Second, the SVM (Support Vector Machine) is employed to determine true signs from the candidates. Once a road sign is detected in a video frame, it is continuously tracked from the next frame until it is disappeared. The 2-D position of a detected sign in the next frame is predicted by the 3-D motion of the vehicle. Here, the 3-D vehicle motion is acquired by using the 3-D pose information of the detected sign. Finally, the predicted 2-D position is corrected by template-matching of the scaled template of the detected sign within a window area around the predicted position. Experimental results show that the proposed method can detect and track many types of road signs successfully. Tracking comparisons with two different methods are shown.
An embedded system has been applied to many fields including households and industrial sites. In the past, user interface products with simple functions were commercialized .but now user demands are increasing and the system has more various applicable fields due to a high penetration rate of the Internet. Therefore, the demand for embedded system is tend to rise In this paper, we Implementation of an embedded system for image tracking. This system is used a fixed IP for the reliable server operation on TCP/IP networks. A real time broadcasting of video image on the internet was developed by using an USB camera on the embedded Linux system. The digital camera is connected at the USB host port of the embedded board. all input images from the video camera is continuously stored as a compressed JPEG file in a directory at the Linux web-server. And each frame image data from web camera is compared for measurement of displacement Vector. That used Block matching algorithm and edge detection algorithm for past speed. And the displacement vector is used at pan/tilt motor control through RS232 serial cable. The embedded board utilized the S3C2410 MPU Which used the ARM 920T core form Samsung. The operating system was ported to embedded Linux kernel and mounted of root file system. And the stored images are sent to the client PC through the web browser. It used the network function of Linux and it developed a program with protocol of the TCP/IP.
본 논문에서는 객체의 관심점(interest points)에 대한 지역 특징 기술자를 이용하여 이미지나 동영상에서 다수의 관심 객체를 효과적으로 인식하고 추적하기 위한 기법을 제안한다. 이를 위해 먼저 대상이 되는 객체를 포함하는 다양한 이미지를 수집하고 SURF 알고리즘을 적용하여 객체의 관심점과 그들에 대한 지역 특징 기술자를 생성한다. 지역 특징에 대한 통계적인 분석을 통하여 관심점들 중에서 해당 객체의 특성을 가장 잘 표현하는 대표점(representative points)을 선택하고 이를 바탕으로 이미지에 존재하는 객체를 인식한다. 또한, 지역 특징 기술자의 정합을 응용하여 각 SURF 지점들의 움직임 벡터를 생성하고 이를 기반으로 실시간으로 객체를 추적한다. 제안하는 기법은 모든 객체를 독립적으로 다루기 때문에, 여러 개의 객체를 동시에 인식하고 추적할 수 있다. 다양한 실험을 통해, 동영상에서 객체의 존재 여부 및 종류를 신속하게 판별하고 관심 객체의 추적을 효과적으로 수행할 수 있음을 보인다.
본 논문에서는 이동 카메라에서 취득한 영상에서 컬러 정보를 이용하여 다수의 보행자를 검출하고 특정 보행자를 추적하는 방법을 제안한다. 먼저 연속한 동영상 입력에 대해 BMA(Block Matching Algorithm)을 이용하여 움직임 벡터를 추출하고 움직임 보상을 한 후 차 영상을 생성한다. 다음은 이진 영상으로 변환한 후 불필요한 잡음 능을 제거하친, 프로젝션을 수행하여 보행자를 검출한다. 만약 검출된 보행자가 서로 인접하거나 겹쳐졌을 경우 RGB 컬러 정보를 이용하여 분리시킨다. 검출된 다수의 보행자로부터 특정 보행자를 추적하기 위해 보행자 가운데 영역의 RGB 컬러 정보를 이용하여 추적한다. 제안된 방법에 대하여 비디오 카메라로 녹화한 영상을 컴퓨터에서 입력받아 검출과 추적 실험을 수행한 결과, 검출 성공률이 97%, 검출 실패율이 3%로 나타났고 추적 또한 우수함을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.