In this paper, we propose a stereoscopic video coding scheme for subway accident monitoring system. The proposed designed for providing flexible video among various displays, such ass control center, station employees and train driver. We uses MPEG-2 standard for coding the left-view sequence and IBMDC coding scheme predicts matching block by interpolating both motion and disparity predicted macroblocks. To provide efficient stereoscopic video service, we define both temporally and spatially scalable layers for each eye's-view by using the concept of Spatio-Temporal scalability. The experimental results show the efficiency of proposed coding scheme by comparison with already known methods and the advantages of disparity estimation in terms of scalability overhead. According to the experimental results, we expect the proposed functionalities will play a key role in establishing highly flexible stereoscopic video codec for ubiquitous display environment where devices and network connections are heterogeneous.
In this paper, the designed and fabrication of a K-band push-push oscillator using miniaturized hairpin resonator have been presented. One experimenal oscillator has been designed and fabricated for K-band point-to-point operation. the miniaturized harpin resonator has been analyzed theoretically and simulated by MPIE(Mixed Potential Integral Equation) method. With this results, the analysis of hairpin resonator which coupled microstrip line has been carried out with transmission-mode using this results. an optimized output matching network for the suppression of the fundamental and the 3rd order harmonic was acquired by using a nonlinear analysis method. The fabricated oscillator shows the output power of -2.28dBm, the fundamental frequency suppression of -19dBc, the 3rd order harmonic suppressionof -24dBc and 0.33 percent effiiency at 22.8GHz. The experimental outputs are in good agreement with the theoretical and simulated results.
Shutdown of boiler plants is a dynamic, complicated, and hazardous operation. Operational error is a major contributor to danserous situations during boiler plant shutdowns. It is important to develop an automatic system which synthesizes operating procedures to safely go from normal operation to complete shutdown. Knowledge representation for automatic shutdown of boiler plants makes use of the hierarchical, rule-based framework for heuristic knowledge, the semantic network, frame for process topology, and AI techniques such as rule matching, forward chaining, backward chaining, and searching. This knowledge representation and modeling account for the operational states, primitive operation devices, effects of their application, and planning methodology. Also, this is designed to automatically formulate subgoals, search for positive operation devices, formulate constraints, and synthesize shutdown procedures in boiler plants.
젤 영상에서 스팟을 탐지한 후, 스팟 사이의 일치 여부를 판단하여 새로운 단백질의 생성되었는지 없어진 단백질이 있는지 알아내게 된다. 젤 영상은 만들어지는 과정에서 같은 단백질이라도 스팟의 위치가 조금씩 다르게 된다. 스팟 사이의 관계는 비선형 변환에 해당하고, 각 스팟 사이의 매치는 NP 문제임이 증명되었고, 이를 해결하기 위한 휴리스틱 방법이 보고되었다. 최적화에 좋은 성능을 보이고 있는 홉필드 신경회로망을 젤 매치에 적용하는 방법을 연구하였다. 홉필드 신경망의 각 뉴런은 뉴런이 대표하는 두 스팟이 일치할 때 활성화되고, 일치하지 않을 때 활성화되지 않도록 하였다. 각 뉴런의 상태를 전체 에너지가 줄어드는 방향으로 변경하면 결국 안정된 상태에 도달하게 되고, 이 때 각 뉴런은 가능한 매치를 표현하게 된다.
Communication, Ocean And Meteorological Satellite (COMS) Meteorological Imager (MI) images are processed for radiometric and geometric correction from raw image data. When intermediate image data are matched and compared with reference landmark images in the geometrical correction process, various techniques for edge detection can be applied. It is essential to have a precise and correct edged image in this process, since its matching with the reference is directly related to the accuracy of the ground station output images. An edge detection method based on neural networks is applied for the ground processing of MI images for obtaining sharp edges in the correct positions. The simulation results are analyzed and characterized by comparing them with the results of conventional methods, such as Sobel and Canny filters.
딥러닝 기술에 있어서 대량의 학습 데이터가 필요하다는 한계점을 극복하기 위한 시도로서, 적은 데이터 만으로도 좋은 성능을 낼 수 있는 few-shot 학습 모델이 꾸준히 발전하고 있다. 하지만 few-shot 학습 모델의 가장 큰 단점인 적은 데이터로 인한 과적합 문제는 여전히 어려운 숙제로 남아있다. 본 논문에서는 모델 압축에 사용되는 distillation 기법을 사용하여 few-shot 학습 모델의 학습 문제를 개선하고자 한다. 이를 위해 대표적인 few-shot 모델인 Siamese Networks, Prototypical Networks, Matching Networks에 각각 distillation을 적용하였다. 본 논문의 실험결과로써 단순히 결과값에 대한 참/거짓 뿐만 아니라, 참/거짓에 대한 신뢰도까지 같이 학습함으로써 few-shot 모델의 학습 문제 개선에 도움이 된다는 것을 실험적으로 증명하였다.
한빛 자기거울 장치는 고온 플리즈마 물성을 연구하기 위한 장치로서 플러즈마 밀도 형성을 위한 slot 형 안테나 고주파 가열 시스템이 중앙 진공용기에 설치되어 있다. 본 연구에서는 이러한 고주파 전송선로, 임피던스 정합 network. 장치 임피던스를 포함하는 한빛 장치의 고주파 가열 시스템에 대하여 기존에 정립된 고주파 가열 이론[1]을 기반으로 하여 이론적인 해석만으로 구성된 회로모델을 완성하였다. 임피던스 정합 소자 값들은 임피던스 정합 조건으로 결정함으로써 다양한 장치 및 플라즈마 변수들의 함수로 표현하여 그 의존성을 조사하였다.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제11권4호
/
pp.19-38
/
2007
Graph theory is becoming increasingly significant as it is applied of mathematics, science and technology. It is being actively used in fields as varied as biochemistry(genomics), electrical engineering(communication networks and coding theory), computer science(algorithms and computation) and operations research(scheduling). The powerful results in other areas of pure mathematics. Rhis paper, besides giving a general outlook of these facts, includes new graph theoretical proofs of Fermat's Little Theorem and the Nielson-Schreier Theorem. New applications to DNA sequencing (the SNP assembly problem) and computer network security (worm propagation) using minimum vertex covers in graphs are discussed. We also show how to apply edge coloring and matching in graphs for scheduling (the timetabling problem) and vertex coloring in graphs for map coloring and the assignment of frequencies in GSM mobile phone networks. Finally, we revisit the classical problem of finding re-entrant knight's tours on a chessboard using Hamiltonian circuits in graphs.
Tai, Do Nhu;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jeong;Na, In-Seop;Oh, A-Ran
스마트미디어저널
/
제7권4호
/
pp.61-69
/
2018
Multi-tracking of general objects and specific faces is an important topic in the field of computer vision applicable to many branches of industry such as biometrics, security, etc. The rapid development of deep neural networks has resulted in a dramatic improvement in face recognition and object detection problems, which helps improve the multiple-face tracking techniques exploiting the tracking-by-detection method. Our proposed method uses face detection trained with a head dataset to resolve the face deformation problem in the tracking process. Further, we use robust face features extracted from the deep face recognition network to match the tracklets with tracking faces using Hungarian matching method. We achieved promising results regarding the usage of deep face features and head detection in a face tracking benchmark.
International journal of advanced smart convergence
/
제10권3호
/
pp.163-171
/
2021
Recently, Machine Learning-based visualization approaches have been proposed to combat the problem of malware detection. Unfortunately, these techniques are exposed to Adversarial examples. Adversarial examples are noises which can deceive the deep learning based malware detection network such that the malware becomes unrecognizable. To address the shortcomings of these approaches, we present Block-matching and 3D filtering (BM3D) algorithm and deep image prior based denoising technique to defend against adversarial examples on visualization-based malware detection systems. The BM3D based denoising method eliminates most of the adversarial noise. After that the deep image prior based denoising removes the remaining subtle noise. Experimental results on the MS BIG malware dataset and benign samples show that the proposed denoising based defense recovers the performance of the adversarial attacked CNN model for malware detection to some extent.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.