• Title/Summary/Keyword: Mat building

Search Result 99, Processing Time 0.025 seconds

Thermal Stress Analysis on the Heat of Hydration Considering Creep and Shrinkage Effects of Mass Concrete (크리이프와 건조수축영향을 고려한 매스콘크리트에서 수화열에 대한 온도응력해석)

  • 김진근;김국한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.107-113
    • /
    • 1992
  • The heat of hydration of cement the causes the internal temperature rise at early age, particulary in massive concrete structures such as a mat-slab of nuclear reactor building or a dam or a large footing. As the result of the temperature rise and restraint of foundation, the thermal stress enough to induce concrete cracks can occur. Therefore, the prediction of the thermal stress is very important in the design and construction stages in order to control the cracks developed in massive concrete structures. And, more creep and shrinkage take place at elevated temperatures in young concrete, Thus the effect of creep and shrinkage must be considered for checking the safety and servicebility(crack, durability and leakage).

  • PDF

Free Vibration Analysis of Tapered Opening Thick Plate (개구부를 갖는 변단면 후판의 자유진동해석)

  • Kim, Il-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.907-910
    • /
    • 2005
  • This paper has the object of investigating natural frequencies of tapered thick plate, tapered ratio, thick plate's opening size by means of finite element method and providing kinetic design data for mat of building structures. Free vibration analysis that tapered thick plate in this paper. Finite element analysis of rectangular plate is done by use of rectangular finite element with 8-nodes. In order to analysis plate which is varioued of plate thickness. the thickness is varied with 5, 10, 15, 20 and the tapered ratio is applied as 0.0, 0.25, 0.5, 0.75, 1.0 respectively. This paper is analyzed varying thickness by taper ratio.

  • PDF

Dynamic Stability Analysis of Tapered Thick Plate (변단면 후판의 동적안정해석)

  • Kim, Il-Jung;Oh, Soog-Kyoung;Lee, Yong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.894-897
    • /
    • 2004
  • This paper has the object of investigating dynamic stability of opening thick plates on Pasternak foundation by means of finite element method and providing Kinematic design data for mat of building structures. Finite element analysis of Tapered Thick plate is done by use of rectangular (mite element with 8-nodes. In order to analysis plate which is supported on Pasternak foundation, the Winkler foundation parameter is varied with $10^2,\;10^3$ and the shear foundation parameter is 5, 10. The ratio of In-plane force to critical load is applied as 0.4, 0.6, respectively. This paper analyzed varying Tapered Ratio.

  • PDF

Vibration Analysis of Tapered Thick Plate Subjected to Static In-plane Stress (면내력을 받는 변단면 후판의 진동해석)

  • Cheong, Jin-Taek;Oh, Soog-Kyoung;Lee, Yong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.521-525
    • /
    • 2004
  • This paper has the object of investigating natural frequencies of tapered thick plate on pasternak foundation by means of finite element method and providing kinetic design data for mat of building structures. vibration analysis that tapered thick plate subjected to In-plane stress is presented in this paper Finite element analysis of rectangular plate is done by use of rectangular finite element with 8-nodes. In order to analysis tapered plate which is supported on pasternak foundation. The ratio of In-plane stress to critical load is varied with $0.2\sigma_{cr},\;0.4\sigma_{cr},\;0.6\sigma_{cr}$, and the Winkler parameter is 0, 10, 100, 1000 the shear foundation parameter 0, 10. The taper ratio is applied as 0.0, 0.2, 0.4, 0.6, 0.8 respectively. This paper is analyzed varying thickness by taper ratio with In-plane stress.

  • PDF

Properties of Charcoal Board Manufactured from Domestic Wood Waste

  • Seo, In-Su;Lee, Hwa-Hyoung
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.3
    • /
    • pp.237-247
    • /
    • 2010
  • This research was carried out to examine the properties of black charcoal board, in order to find the proper manufacturing condition for the black charcoal-board made of the charcoal. The charcoal in this study was distillated from domestic wood waste, and it were also the purpose of this study to see if the black charcoal-board has the advantageous properties of charcoal as a well-being building material against the sick house problem. Domestic wood waste was consisted of MDF 40%, PB 30%, plywood 15% and wood 15%, respectively. Black charcoal board was produced by hot pressing with following conditions; temperature $170^{\circ}C$, three stage pressing cycle of $40-10-40\;kgf/cm^2$(1min.-2.5min.-5min.) and non formaldehyde adhesives [P15%+M5%:MDI(M), poly vinyl acetate emulsion(P). Fine mixed particle size [#6-12(16.9%), #12-18(16.7%), #12-40(47.2%), #40-60(9.5%), #60-100(5.9%), less than #100(3.8%)] gave better results than larger particle size [over #6(33.8%), #12-18(17.7%), #12-40(37.7%), #40-60(6.4%), #60-100(2.6%), less than #100(1.8%)]. Final moisture content of the mat was best at 36%. Black charcoal-board showed less MOR and IB(internal bond), more WA(water absorption) than that of white charcoal-board. Black charcoal board showed not only the same gas adsorption and dimensional stability as white charcoal board but also good cutting, nailing and drilling for indoor environment systems.

  • PDF

Manufacture and Properties of White Charcoal Board in Relation with Final Mat Moisture Content and Charcoal Particle Size (백탄파티클 크기와 최종매트함수율에 따른 백탄보드의 제조와 성능)

  • Lee, Hwa Hyoung;Cho, Youn Mean;Park, Han Sang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.3 s.131
    • /
    • pp.22-29
    • /
    • 2005
  • This research was carried out not only to examine the proper manufacturing condition for white charcoal board in relation to charcoal particle size and final mat moisture content (FMC), but also to maintain the advantageous properties of white charcoal as a well being building material against the sick house problem. Excellent functional white charcoal board was produced with two groups of FMC 20~25% and FMC 36~60%. The latter showed best results among tested samples in two types which are #40-60type-P15%, M5%, FMC 60% and mixed type-P15%, M5%, FMC36% with non formaldehyde adhesives [MDI (M), poly vinyl acetate emulsion (P)] and three stage pressing cycle of 30-10-$30kgf/cm^2$ (1 min.-1.5 min.-6 min.). The former gave highly acceptable results in two types which are #6 over-M15%FMC25% and mixed type-M25%FMC20%. White charcoal board gave excellent in dimensional stability, gas adsorption and far-infrared emission.

A Case Study on Field Construction of Cold Weather Mass Concreting Using Double Bubble Sheets and Hydration Heat Difference Method (이중 버블시트 및 수화발열량차 공법에 의한 한중매스콘크리트의 현장적용 연구)

  • Kim Jong;Yoon Jae-Ryung;Jeon Chung-Keun;Shin Dong-An;Oh Seon-Gyo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.15-18
    • /
    • 2006
  • The test result of mat concrete applying both hydration heat difference and insulation curing method on new construction of Cheongju university educational building are summarized as following. Both fresh concrete and compressive strength properties were satisfied In aimed value. Setting time of concrete incorporating 15% of fly ash(FA) retarded 1.2 hour than control concrete. Temperature history of mali concrete indicated that the highest temperature of center was exhibited at $126^{\circ}C$ after 51 hours while the highest temperature of upper section was $10.6^{\circ}C$ after 46 hours. Temperature Difference between center and surface was managed at less than $6^{\circ}C$ during whole curing period. In addition the temperature of upper section secured more than $3.3^{\circ}C$ while the temperature of outside was indicated at less than $-10^{\circ}C$. Maturity by parts of construction secured more than $30^{\circ}C$ DD higher than outside at 3 days. The more number of times, applying insulation curing method by double bubble sheets, increased, the higher economic effect was secured. Overall it was clear that applying both double bubble sheets and hydration heat difference method on this new construction can resist hydration heat crack, early frost demage and strength decrease. It also significantly contributed quality improvement of cold weather concreting

  • PDF

A Study on Examination of Application in Waste Filled Land and Performance Evaluation as Waterproofing Material by the Spray Water-Soluble Rubber Asphalt (뿜칠형 수용성 고무화 아스팔트 차수재의 성능평가 및 폐기물 매립지 적용성 검토에 관한 연구)

  • 오상근;김형무;정문정;최은수
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.2
    • /
    • pp.165-173
    • /
    • 2001
  • This study examinated the application in construction field and the development of waterproofing material system by the spray water-soluble rubber asphalt to solve the problems of synthetic polymer sheet and gio membrane(A mat sheet of Bentonite) that had been used domestic waterproofing material in advance. As the result of study, characters of study water-soluble rudder asphalt are the follows: 1) The amount of water absorption was '0.06'g and the seepage quality was '0'g in result. 2) The tensile strength was about 30.7kgf/$\textrm{cm}^2 and the elongation was about 72.4% in result. 3) After reliance of temperature test had been ended, the tensile strength was about 72.4kgf/$\textrm{cm}^2 in low temperature and about 30.7kgf/$\textrm{cm}^2 in normal temperature. 4) After acid and alkaline treatment had been ended, the tensile strength was about 19.7kgf/$\textrm{cm}^2$ and about 21.9kgf/$\textrm{cm}^2 in result. 5) After chlorine ion treatment had been ended, the tensile strength was 28.5kgf/$\textrm{cm}^2$ and the elongation was 250% in result. 6) The impact performance was subsided at 1.5m height. 7) After promotion weathering had been ended, the tensile and elongation was about 26.0kgf/$\textrm{cm}^2, 214% in result. So, this study can propose the spray water-soluble rubber asphalt to satisfy the and durability of waste filled land.

  • PDF

Case Study on 5kWp Transparent Thin-Film BIPV System (5kW급 투광형 박막 BIPV시스템의 실증연구)

  • An, Young-Sub;Kim, Sung-Tae;Lee, Sung-Jin;Song, Jong-Hwa;Hwang, Sang-Kun;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.29-35
    • /
    • 2010
  • This study has been carried out empirical research on Transparent Thin-film BIPV modules, BIPV modules installed on the exterior of the building are applied a laminated module 1kWp, double-glazing module 3kWp and triple-glazing module 1kWp. Applied to the total capacity of BIPV modules are 5kWp. In this study, design and construction process of BIPV systems is presented. In addition, through monitoring of the BIPV system, the temperature and the power characteristics of each module were analyzed. During the measurement period, the module temperature measurement results, the maximum surface temperature of $51.5^{\circ}C$ triple-glazing BIPV module showed the highest, followed by double-glazing BIPV module $49.1^{\circ}C$, $44.7^{\circ}C$ laminated modules, respectively. Power output results, the daily average double-layer modules showed 4.10kWh/day, triple-glazing module 1.57kWh, respectively 1.81kWh laminated modules. In particular, the power efficiency of triple-glazing BIPV module was lower than the power efficiency of the laminated BIPV module. This phenomenon is considered to be affected by the module temperature. In the future, BIPV modules in this study the relationship between module temperature and power characteristics plans to identify.

Evaluation of critical tractive forces of vegetation mats enhanced with biopolymer mixed soil (바이오폴리머 혼합토와 결합된 식생매트의 한계 소류력 평가)

  • Lee, Du Han;Kim, Myounghwan
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.167-179
    • /
    • 2020
  • Recently, new levee material has been developed to enhance natural soil strength and vegetation growth using biopolymer. In the study, critical tractive force of vegetated mats mixed with biopolymer mixed soil has been evaluated to apply the mixed soil to levee construction material. The mixed soil has been produced by mixing beta-glucan, clay, and sand. Full scale test bodies have been constructed with 3 cm thick of the mixed soil. Total 4 test bodies have been constructed and experimented. Critical tractive forces have been evaluated by observation and measurement of failure conditions and soil loss. Although performance of the vegetated revetments are affected by vegetation coverage conditions, the critical tractive forces are shown about 40 N/㎡ and the critical velocities are shown about 4 m/sec by full scale experiment. Erosion resistance is also enhanced by combination of root and net with mat materials.