• Title/Summary/Keyword: Mastitis Prediction

Search Result 6, Processing Time 0.026 seconds

Method for predicting the diagnosis of mastitis in cows using multivariate data and Recurrent Neural Network (다변량 데이터와 순환 신경망을 이용한 젖소의 유방염 진단예측 방법)

  • Park, Gicheol;Lee, Seonghun;Park, Jaehwa
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.1
    • /
    • pp.75-82
    • /
    • 2021
  • Mastitis in cows is a major factor that hinders dairy productivity of farms, and many attempts have been made to solve it. However, research on mastitis has been limited to diagnosis rather than prediction, and even this is mostly using a single sensor. In this study, a predictive model was developed using multivariate data including biometric data and environmental data. The data used for the analysis were collected from robot milking machines and sensors installed in farmhouses in Chungcheongnam-do, South Korea. The recurrent neural network model using three weeks of data predicts whether or not mastitis is diagnosed the next day. As a result, mastitis was predicted with an accuracy of 82.9%. The superiority of the model was confirmed by comparing the performance of various data collection periods and various models.

Near Infrared Spectroscopy for Diagnosis: Influence of Mammary Gland Inflammation on Cow´s Milk Composition Measurement

  • Roumiana Tsenkova;Stefka Atanassova;Kiyohiko Toyoda
    • Near Infrared Analysis
    • /
    • v.2 no.1
    • /
    • pp.59-66
    • /
    • 2001
  • Nowadays, medical diagnostics is efficiently supported by clinical chemistry and near infrared spectroscopy is becoming a new dimension, which has shown high potential to provide valuable information for diagnosis. The investigation was carried out to study the influence of mammary gland inflammation, called mastitis, on cow´s milk spectra and milk composition measured by near infrared spectroscopy (NIRS). Milk somatic cell counts (SCC) in milk were used as a measure of mammary gland inflammation. Naturally occurred variations with milk composition within lactation and in the process of milking were included in the experimental design of this study. Time series of unhomogenized, raw milk spectral data were collected from 3 cow along morning and evening milking, for 5 consecutive months, within their second lactation. In the time of the trial, the investigated cows had periods with mammary gland inflammation. Transmittance spectra of 258 milk samples were obtained by NIRSystem 6500 spectrophotometer in 1100-2400 nm region. Calibration equations for the examined milk components were developed by PLS regression using 3 different sets of samples: samples with low somatic cell count (SCC), samples with high SCC and combined data set. The NIR calibration and prediction of individual cow´s milk fat, protein, and lactose were highly influenced by the presence of mil samples from animals with mammary gland inflammation in the data set. The best accuracy of prediction (i.e. the lower SEP and the higher correlation coefficient) for fat, protein and lactose was obtained for equations, developed when using only “healthy” samples, with low SCC. The standard error of prediction increased and correlation coefficient decreased significantly when equations for low SCC milk were used to predict examined components in “mastitis” samples with high SCC, and vice versa. Combined data set that included samples from healthy and mastitis animals could be used to build up regression models for screening. Further use of separate model for healthy samples improved milk composition measurement. Regression vectors for NIR mild protein measurement obtained for “healthy” and “mastitic” group were compared and revealed differences in 1390-1450 nm, 1500-1740 nm and 1900-2200 nm regions and thus illustrated post-secretory breakdown of milk proteins by hydrolytic enzymes that occurred with mastitis. For the first time it has been found that monitoring the spectral differences in water bands at 1440 nm and 1912 nm could provide valuable information for inflammation diagnosis.

DISEASE DIAGNOSED AND DESCRIBED BY NIRS

  • Tsenkova, Roumiana N.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1031-1031
    • /
    • 2001
  • The mammary gland is made up of remarkably sensitive tissue, which has the capability of producing a large volume of secretion, milk, under normal or healthy conditions. When bacteria enter the gland and establish an infection (mastitis), inflammation is initiated accompanied by an influx of white cells from the blood stream, by altered secretory function, and changes in the volume and composition of secretion. Cell numbers in milk are closely associated with inflammation and udder health. These somatic cell counts (SCC) are accepted as the international standard measurement of milk quality in dairy and for mastitis diagnosis. NIR Spectra of unhomogenized composite milk samples from 14 cows (healthy and mastitic), 7days after parturition and during the next 30 days of lactation were measured. Different multivariate analysis techniques were used to diagnose the disease at very early stage and determine how the spectral properties of milk vary with its composition and animal health. PLS model for prediction of somatic cell count (SCC) based on NIR milk spectra was made. The best accuracy of determination for the 1100-2500nm range was found using smoothed absorbance data and 10 PLS factors. The standard error of prediction for independent validation set of samples was 0.382, correlation coefficient 0.854 and the variation coefficient 7.63%. It has been found that SCC determination by NIR milk spectra was indirect and based on the related changes in milk composition. From the spectral changes, we learned that when mastitis occurred, the most significant factors that simultaneously influenced milk spectra were alteration of milk proteins and changes in ionic concentration of milk. It was consistent with the results we obtained further when applied 2DCOS. Two-dimensional correlation analysis of NIR milk spectra was done to assess the changes in milk composition, which occur when somatic cell count (SCC) levels vary. The synchronous correlation map revealed that when SCC increases, protein levels increase while water and lactose levels decrease. Results from the analysis of the asynchronous plot indicated that changes in water and fat absorptions occur before other milk components. In addition, the technique was used to assess the changes in milk during a period when SCC levels do not vary appreciably. Results indicated that milk components are in equilibrium and no appreciable change in a given component was seen with respect to another. This was found in both healthy and mastitic animals. However, milk components were found to vary with SCC content regardless of the range considered. This important finding demonstrates that 2-D correlation analysis may be used to track even subtle changes in milk composition in individual cows. To find out the right threshold for SCC when used for mastitis diagnosis at cow level, classification of milk samples was performed using soft independent modeling of class analogy (SIMCA) and different spectral data pretreatment. Two levels of SCC - 200 000 cells/$m\ell$ and 300 000 cells/$m\ell$, respectively, were set up and compared as thresholds to discriminate between healthy and mastitic cows. The best detection accuracy was found with 200 000 cells/$m\ell$ as threshold for mastitis and smoothed absorbance data: - 98% of the milk samples in the calibration set and 87% of the samples in the independent test set were correctly classified. When the spectral information was studied it was found that the successful mastitis diagnosis was based on reviling the spectral changes related to the corresponding changes in milk composition. NIRS combined with different ways of spectral data ruining can provide faster and nondestructive alternative to current methods for mastitis diagnosis and a new inside into disease understanding at molecular level.

  • PDF

Somatic cell counts determination in cow milk by near infrared spectroscopy: A new diagnostic tool

  • Tsenkova, R.;Atanassova, S.;Kawano, S.;Toyoda, K.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4104-4104
    • /
    • 2001
  • Milk somatic cell count (SCC) is a recognized indicator of cow health and milk quality. The potential of near infrared (NIR) spectroscopy in the region from 1100 to 2500nm to measure SCC content of cow milk was investigated. A total of 196 milk samples from 7 Holstein cows were collected for 28 days, consecutively, and analyzed for fat, protein, lactose and SCC. Three of the cows were healthy, and the rest had mastitis periods during the experiment. NIR transflectance milk spectra were obtained by the InfraAlyzer 500 spectrophotometer in a wavelength range from 1100 to 2500 nm. The calibration for logSCC was performed using partial least square (PLS) regression and different spectral data pretreatment. The best accuracy of determination was found for equation, obtained using smoothed absorbance data and 10 PLS factors. The standard error of calibration was 0.361, calibration coefficient of multiple correlation 0.868, standard error of prediction for independent validation set of samples 0.382, correlation coefficient 0.854 and the variation coefficient 7.63%. The accuracy of logSCC determination by NIR spectroscopy would allow health screening of cows, and differentiation between healthy and mastitic milk samples. When the spectral information was studied it has been found that SCC determination by NIR milk spectra was indirect and based on the related changes in milk composition. In the case of mastitis, when the disease occurred, the most significant factors that simultaneously influenced milk spectra were alteration of milk proteins and changes in ionic concentration of milk.

  • PDF

Development of program for herd health management by milk components analysis of dairy cows (젖소에서 유성분 분석을 통한 우군 건강관리프로그램의 개발)

  • Moon, Jin-San;Son, Chang-Ho;Lee, Bo-Kyeun;Joo, Yi-Seok;Kang, Hyun-mi;Kim, Jong-Man;Kim, Byoung-Tae;Moon, Hyun-Sik
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.4
    • /
    • pp.485-493
    • /
    • 2002
  • The purpose of this study was to develope a computer program to help with gross diagnosis of protein-energy balance and feeding management practice and with the prediction about the risk possibility of productive disease such as reproductive and metabolic disorders by evaluating fat, protein, and milk urea nitrogen (MUN) from individual cow milk in dairy herd Somatic cell counts also represent the condition of udder health. The principal flow charts of this program was to check on herd management, sampling the composite milk, analysis the milk composition, conversion of data from milking equipment to program, input and analysis of data in program, and report. This program is compatible with window 95/98 system. The major analytical elements of this program were presented as; the profile of herd lactation curve analysis of the test-day milk production level, the distribution of somatic cell count, the fat to protein ratio to evaluate body energy balance, and the interpretation of dietary protein-energy balance by milk protein and MUN contents for individual cows. This program using milk fat, protein, MUN, and somatic cell counts will serve as a monitoring tool for the protein-energy balance and the feeding management practice, and for distribution of mastitis in individual cows. It will also be used to manage the nutritional and reproductive disorders and mastitis at the farm level.

Prediction of dairy cow mastitis with multi-sensor data using Multi-Layer Perceptron(MLP) (다중 센서 데이터와 다층 퍼셉트론을 활용한 젖소의 유방염 진단 예측)

  • Song, Hye-Won;Park, Gi-Cheol;Park, JaeHwa
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.788-791
    • /
    • 2020
  • 낙농업에서 경제적 손실을 불러일으키고 관찰 시간과 비용이 필요한 젖소의 유방염 관리는 중요하다. 그러나 지금까지의 연구는 유방염 진단에 초점을 맞추고 있고, 예측하려는 시도는 전무하다. 유방염에 걸린 개체는 며칠 동안 우유를 생산할 수 없기 때문에 낙농가에 막대한 피해를 준다. 따라서 젖소가 유방염에 걸려 증상이 나타나기 전에 미리 파악해 조처를 할 수 있도록 하는 것이 중요하다. 이에 본 연구는 유방염 예측을 위해 생체 데이터를 포함한 다중 센싱 데이터를 사용해 유방염 예측 모델을 개발하였다. 모델에 사용된 데이터는 충청남도의 농가에 설치된 로봇 착유기로 부터 수집하였으며, 일정 기간 동안의 다중 센싱 데이터를 바탕으로 다음 날의 유방염 여부를 예측한다. 많은 양의 비선형 데이터를 효과적으로 처리하기 위해 다층 퍼셉트론을 사용해 모델을 학습하였다. 그 결과, 81.6%의 예측 정확도를 보였으며 교차 검증을 통해 정확도뿐만 아니라 재현율까지 우수함을 확인할 수 있었다.