• Title/Summary/Keyword: Master-Slave Controller

Search Result 105, Processing Time 0.032 seconds

ECAM Control System Based on Auto-tuning PID Velocity Controller with Disturbance Observer and Velocity Compensator

  • Tran, Quang-Vinh;Kim, Won-Ho;Shin, Jin-Ho;Baek, Woon-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.113-118
    • /
    • 2010
  • This paper proposed an ECAM (Electronic cam) control system which has simple and general structure. The proposed cam controller adopted the linear and polynomial curve-fitting method to generates a smooth cam profile curve function. Smooth motion trajectory of master actuator guarantees the good performance of slave motion and has an important effect on the interpolation quality of ECAM. The auto-tuning PID velocity controller was applied to overcome the uncertainties in ECAM, and the gains of the controller are updated continuously to ensure the consistency of system performance under varying working conditions. The robustness of system against the varying load torque disturbances and noises is guaranteed by using the load torque disturbance observer to suppress the disturbance on master actuator. The velocity compensator was applied to compensate the degradation of performance of slave motion caused from the varying driving speed of master motion. The stability and validity of the proposed ECAM control system was verified by simulation results.

High precision position synchronous control in a multi-axes driving system (II) (다축 구동 시스템의 정밀 위치동기 제어(II))

  • 양주호;변정환;김영복;정석권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.98-106
    • /
    • 1997
  • In this paper, a new method of position synchronizing control is proposed for multi-axes driving system. The proposed position synchronizing control system is constituted with speed and synchronizing controller. The speed controller is aimed at the following to speed reference. Furthermore, it is designed to guarantee low sensitivity under some disturbance as well as robustness against model uncertainties using $H_{\infty}$technique. The synchronizing controller is designed to keep minimizing the position error using PID control law which is considered to reduce the dimension of transfer function in the control system. Especially, the proposed method can be easily conducted by controlling only slave axis speed, because it, has variable structure which is decided to master and slave axis by the sign of synchronizing error. Therfore, the master axis which is smaller influenced than another axes by disturbance can be controlled without reducing or increasing its speed for precise position synchronization. The effectiveness of the proposed method is sucessfully confirmed through many experiments.s.

  • PDF

Mastership Passing Algorithm for Train Communication Network Protocol (철도 제어통신 네트워크 프로토콜에서 마스터권한 진달 기법)

  • Seo, Min-Ho;Park, Jae-Hyun;Choi, Young-Joon
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.88-95
    • /
    • 2007
  • TCN(Train Communication Network) adopts the master/slave protocol to implement real-time communication. In this network, a fault on the master node, cased by either hardware or software failure, makes the entire communication impossible over TCN. To reduce fault detection and recovery time, this paper propose the contention based mastership transfer algorithm. Slave nodes detect the fault of master node and search next master node using the proposed algorithm. This paper also shows the implementation results of a SoC-based Fault-Tolerant MVB Controller(FT-MVBC) which includes the fault-detect-logic as well as the MVB network logic to verify this algorithm.

Time Domain Passivity Approach for Soft and Deformable Environments (변형 가능한 작업환경에 대한 시간영역 수동제어 방법)

  • Ryu Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.457-463
    • /
    • 2006
  • Recently proposed control scheme for a stable teleoperation, which was based on two-port time-domain passivity approach[21], has been successful for a contact with high stiffness environments. However, we found several conservatisms during the contact with deformable environments and unconstrained motion. The two-port time-domain passivity controller was excessively dissipating energy even though it was not necessary for some cases of an unconstrained motion and soft contact. The main reason of those conservatisms was on the fact that the two-port time-domain passivity controller was activated without considering the amount of energy dissipation at the master and slave manipulators. Especially, the exclusion of the slave manipulator from the two-port was the dominant reason of the conservatisms. In this paper, we consider the amount of energy dissipation at slave manipulator for designing the time-domain passivity observer and controller. The measured interaction force between slave manipulator and environment allow the time-domain passivity observer to include the amount of energy dissipation at the slave manipulator. Based on the modified passivity observer, reference energy following method[24] is applied to satisfy the passivity condition in real-time. The feasibility of the developed methods is proved with experiments. Improved performance is obtained for an interaction with deformable environments and an unconstrained motion.

Bilateral Controller for Time-varying Communication Delay: Time Domain Passivity Approach (시변 시간지연 하에서 안정성을 보장하는 양방향 원격제어기 : 시간영역 수동성 기법)

  • Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1099-1105
    • /
    • 2007
  • In this paper, modified two-port time-domain passivity approach is proposed for stable bilateral control of teleoperators under time-varying communication delay. We separate input and output energy at each port of a bilateral controller, and propose a sufficient condition for satisfying the passivity of the bilateral controller including time-delay. Output energy at the master port should be less than the transmitted input energy from the slave port with time-delay, and output energy at the slave port should be less than the transmitted input energy from the master port with time-delay. For satisfying above two conditions, two passivity controllers are attached at each port of the bilateral controller. A packet reflector with wireless internet connection is used to introduce serious time-varying communication delay of teleoperators. Average amount of time-delay was about 190(msec) for round trip, and varying between 175(msec) and 275(msec). Moreover some data packet was lost during the communication due to UDP data communication. Even under the serious time-varying delay and packet loss communication condition, the proposed approach can achieve stable teleoperation in free motion and hard contact as well.

Designing a Force-Reflcting Hand Controller (힘반향 Hand Controller 설계)

  • 김기호;김승호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.594-597
    • /
    • 1995
  • A hand controller in teleoperation is a man-machine interface device that provides real-time interaction between a human operator at control site and a slave manipulator at remote site. In this paper, we examine the design issure related to various types of hand controllers in use. Emphasis is placed on bilateral hand controllers and their design parameters. We describe the design of a new 6 degree-of-freedom universal force-reflecting hand controller to control a remote Schilling Titan manipulator. This hand controller allows the operstor to maintain spatial corresponence in remote manipulative operation and fell a sense of contact with the environment. Finally, we demonstrate the graphic simulation of the hand controller to verify its design characteristics.

  • PDF

A Neurofuzzy Algorithm-Based Advanced Bilateral Controller for Telerobot Systems

  • Cha, Dong-hyuk;Cho, Hyung-Suck
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.100-107
    • /
    • 2002
  • The advanced bilateral control algorithm, which can enlarge a reflected force by combining force reflection and compliance control, greatly enhances workability in teleoperation. In this scheme the maximum boundaries of a compliance controller and a force reflection gain guaranteeing stability and good task performance greatly depend upon characteristics of a slave arm, a master arm, and an environment. These characteristics, however, are generally unknown in teleoperation. It is, therefore, very difficult to determine such maximum boundary of the gain. The paper presented a novel method for design of an advanced bilateral controller. The factors affecting task performance and stability in the advanced bilateral controller were analyzed and a design guideline was presented. The neurofuzzy compliance model (NFCM)-based bilateral control proposed herein is an algorithm designed to automatically determine the suitable compliance for a given task or environment. The NFCM, composed of a fuzzy logic controller (FLC) and a rule-learning mechanism, is used as a compliance controller. The FLC generates compliant motions according to contact forces. The rule-learning mechanism, which is based upon the reinforcement learning algorithm, trains the rule-base of the FLC until the given task is done successfully. Since the scheme allows the use of large force reflection gain, it can assure good task performance. Moreover, the scheme does not require any priori knowledge on a slave arm dynamics, a slave arm controller and an environment, and thus, it can be easily applied to the control of any telerobot systems. Through a series of experiments effectiveness of the proposed algorithm has been verified.

Realization of automobile electromotive mirror system using Controller Area Network(CAN Protocol) (Controller Area Network을 이용한 자동차용 전동거울 시스템 구현)

  • Yoon, Sang-Jin;Cho, Yong-Seok;Lee, Jong-Sung;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2234-2236
    • /
    • 2002
  • In this paper, realized an automation system that applies the automobile electromotive mirror using CAN(Controller Area Network : ISO l1898). CAN is being used mainly in ECUs (Electronic Control Units) connection of control system or automobile inside. And it has high reliability in the various network protocol. To be realized position system, Automobile Electro mirror, has a strong point that estabilishment e decrease and ease of maintenance it compare PPP(Point-to-point) method of existed. The realization composed of three portions. One Input Slave Con which accept a user's input, another Output Slave Co which drove it makes the motor of electromotive mirr other Master Controller which interfacing the two Controller. Automobile electromotive mirror realized time system that will be able to minize the delay t point of time user's input until output point of time mirror.

  • PDF

A Shared Compliant Control Scheme based on Internal Model Control

  • Ahn, Sung-Ho;Jin, Jae-Hyun;Park, Byung-Suk;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1571-1574
    • /
    • 2003
  • A shared compliant control scheme based on IMC is proposed for the position-force force reflecting control system. The controller of the slave manipulator is designed by IMC method for the open loop unstable plant. The compliant control is implemented by first order low pass filter. In the proposed scheme, the slave manipulator well tracks the position of the master manipulator in free space and the compliance of the slave manipulator is autonomously controlled in contact condition. The simulation results show that the excellence of the proposed controller.

  • PDF

Identification of Feasible Scaled Teleoperation Region Based on Scaling Factors and Sampling Rates

  • Hwang, Dal-Yeon;Blake Hannaford;Park, Hyoukryeol
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • The recent spread of scaled telemanipulation into microsurgery and the nano-world increasingly requires the identification of the possible operation region as a main system specification. A teleoperation system is a complex cascaded system since the human operator, master, slave, and communication are involved bilaterally. Hence, a small time delay inside a master and slave system can be critical to the overall system stability even without communication time delay. In this paper we derive an upper bound of the scaling product of position and force by using Llewellyns unconditional stability. This bound can be used for checking the validity of the designed bilateral controller. Time delay from the sample and hold of computer control and its effects on stability of scaled teleoperation are modeled and simulated based on the transfer function of the teleoperation system. The feasible operation region in terms of position and force scaling decreases sharply as the sampling rate decreases and time delays inside the master and slave increase.

  • PDF