• Title/Summary/Keyword: Master Robot

Search Result 133, Processing Time 0.026 seconds

Estimation of human impedance and its application to collaboration work with robot (인간의 임피던스 추정 및 로봇과의 협력 작업으로의 적용)

  • 홍석규;김창호;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1812-1815
    • /
    • 1997
  • This paper treats the estimation of human impedance and their application to collaboration work robot. Initially, we performa an experiment at whcich teh human becomes a slave and the robot behaves like a master having F/T sensor on its end. the human impedance expressed interms of mass, damping, and stiffness properties are estimated based on the force data measured by F/T sensor and the positiion data of the robot. To show the effectiveness of the estimated human impedance, we perform the second experiment at which the roles of the human and the robot are reversed. It is shown that the robot using the estimated human impedance follows the trajectory commanded by human very smoothly.

  • PDF

A study on the new method of force reflection control for the teleoperated mobile robot

  • Hong, Sun-Gi;Lee, Ju-Jang;Kim, Seungho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1523-1526
    • /
    • 1996
  • This paper presents a new method of force reflection in the teleoperated mobile robot control: artificial force feedback. Generally it is well known that force feedback from slave to master increases the reality with which the operator interacts with the environment. In the applications of the teleoperated mobile robot, however, such a force feedback control algorithm has rarely appeared in the literature because the contact force between the environment and the mobile robot is not available. In this paper, a method of artificially generating the feedback force for the teleoperated mobile robot is presented in order to improve the task performance. The computed artificial force feeds into the new designed joystick so as to increase the telepresence of the environment. Through simulations, we confirm the validity and effectiveness of our algorithm.

  • PDF

Development of Robot System for Cleaning & Inspection of Live-line Tension Insulator String (활선 내장애자련 청소 및 점검용 로봇 시스템의 개발)

  • Park J.Y.;Cho B.H.;Byun S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.315-316
    • /
    • 2006
  • A new cleaning robot system for live-line tension insulator string was developed to prevent an insulator failure, which can have severe effects on national security as well as national industry and economy. The robot moves along the insulator string using the clamps installed on its two moving frames. Especially, unlike the existing cleaning robots using jets of water or water/air, the robot system adopts dry cleaning method using a rotating brush and a circular motion guide. This robot system has control architecture consisting of a master control unit and two slave control units. We confirmed its effectiveness through experiments.

  • PDF

Human-Robot Collaboration Work Via Human Impedance Estimation (인간 임피던스 추정을 이용한 인간과 로봇의 협조 작업)

  • Suh, Dong-Soo;Hong, Suk-Kyu;Lee, Byung-Ju;Suh, Il-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.132-140
    • /
    • 1999
  • This paper treats the estimation of human impedance and their application to human-robot collaboration work. Initially, we perform an experiment at which the human becomes a slave and the robot behaves like a master having F/T sensor on its end. The human impedance expressed in terms of mass, damping, and stiffness properties are estimated based on the force data measured by F/T sensor and the commanded position data of the robot. To show the effectiveness of the estimated human impedance, we perform the second experiment at which the roles of the human and the robot are reversed. It is shown that the robot using the estimated human impedance follows the trajectory commanded by human very smoothly.

  • PDF

A Study on Force Reflection Controller of Tele-Surgery Control System using ERF (ER유체를 이용한 수술용 원격 제어 시스템의 힘 반사 제어부에 관한 연구)

  • 신진오;이은준;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.132-135
    • /
    • 2000
  • The development of a robot system being able to work instead of human in the hazardous environment have been conducted for many year. In this study, the new design of controllers for the Master-Slave system is discussed. The Master-Slave system, force, velocity and torque signals are communicated between a master and a slave system. the conventional requires the enhancement of characteristics of tactility for minute force, precision signals and mechanical abrasion of loader. It is possible b controlling the viscosity of ERF(Electro-rheological fluid) since it varies with the electric field. Design of controller as well comparison between numerical simulation and experiments as will be presented. Futhermore, current methodology is also applicable to design of tele-surgery

  • PDF

A Study on Development and realization of control algorithm for robot hand using master hand and slave hand (Master hand와 slave hand를 이용한 로붓 손의 제어 알고리즘 개발 및 구현에 관한 연구)

  • Lee, Seung;Choi, Kyung-Sam;Lee, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2430-2432
    • /
    • 2002
  • We made a master hand which can be used as tool for getting grasping data. By using the data from the master hand, we analyzed grasping patterns of human hands. Based on this analyzed results, we developed an grasping algorithm for some particular hand actions. To develop the above algorithm, we programmed a 3D simulation S/W using Visual C++. And we made a slave hand to prove the validity of the proposed algorithm.

  • PDF

Master Arm and Control System for Teleoperated Bolting Robot (원격 제어되는 볼팅 로봇을 위한 마스터암과 제어 시스템)

  • Lee, Sang Woo;Park, Jang Woo;Park, Shin Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.185-193
    • /
    • 2013
  • The construction automation provides safer and more productive working environment of construction site. We developed the automation system of bolting operation for high-rise building in the previous research. However, this system has a weak point that the operation has to be processed in the air with the operator in the cabin. This weakness leads operators to considerably dangerous environment. Therefore, we proposed the tele-operation system in order to supplement this weak point. Furthermore, it leads more effective operation by application of more intuitive controller; spherical coordinate based Master Arm than the joystick in the Mobile Bolting Robot system. These proposed system and controller were evaluated based on Fitts' law paradigm, which is a general estimation method of speed accuracy of task. Through the experimental results, new developed tele-operation system is compared with the actual operation and it discloses distinctions between two systems. As a result, it is found that new developed teleoperation system can be possible to replace the operation in the cabin.

Dynamic Analysis of Multi-Robot System Forcing Closed Kinematic Chain (복수로봇 시스템의 동력학적 연구-대상물과 닫힌 체인을 형성할때의 문제-)

  • 유범상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1023-1032
    • /
    • 1995
  • The multiple cooperating robot system plays an important role in the research of modern manufacturing system as the emphasis of production automation is more on the side of flexibility than before. While the kinematic and dynamic analysis of a single robot is performed as an open-loop chain, the dynamic formulation of robot in a multiple cooperating robot system differs from that of a single robot when the multiple cooperating robots form a closed kinematic chain holding an object simultaneously. The object may be any type from a rigid body to a multi-joint linkage. The mobility of the system depends on the kinematic configuration of the closed kinematic chain formed by robots and object, which also decides the number of independent input parameters. Since the mobility is not the same as the number of robot joints, proper constraint condition is sought. The constraints may be such that : the number of active robot joints is kept the same as mobility, all robot joints are active and have interrelations between each joint forces/torques, two robots have master-slave relation, or so on. The dynamic formulation of system is obtained. The formulation is based on recursive dual-number screw-calculus Newton-Eulerian approach which has been used for single robot analysis. This new scheme is recursive and compact symbolically and may facilitate the consideration of the object in real time.

Improvement of surgical haptic master device using cable-conduit and backlash compensation by smooth backlash inverse (케이블 컨듀잇 구조의 수술용 햅틱 마스터 장치의 개선과 smooth backlash inverse를 이용한 backlash 보정)

  • Choi, Woo Hyeok;Yoon, Sung Min;Lee, Min Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.48-56
    • /
    • 2014
  • In robotic surgery, a surgeon checks only a surgical site of patient in the progress of surgery by vision and sound information. In order to solve this limited information, the haptic function is necessary. And haptic surgical robot is also necessary to design a haptic master device. The master device for laparoscope operation with cable-conduit was developed in previous research to give haptic function. It suggested a possibility of developing a master device by using the cable-conduit. However, it is very inconvenient to use. Therefore, this paper suggests a new mechanism design structure to solve the problems of the previous work by new forming a new master device. And it has proved that it's usability is better than previous one. Furthermore it has also experimented and analyzed that a backlash of new master device is compensated by smooth backlash inverse algorithm.

On a Posture Control of Human Robot Master Arm

  • Moon, Jin-Soo;Kim, Cheul-U
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.24-31
    • /
    • 2006
  • This study developed a human robot mast arm, which has a structure similar to the human arm, with the objective of taking over human works. The robot arm was structured to reproduce human actions using three axes on each of the shoulder and the wrist based on mechanics, and the actuator of each axis adopted an ordinary DC motor. The servo system of the actuator is a one body type employing an amp for electric power, and it was designed to be small and lightweight for easy installation. We examined the posture control characteristics of the developed robot mast arm in order to test its interlocking, continuous motions and reliability.