• 제목/요약/키워드: Massive Traffic

검색결과 113건 처리시간 0.386초

A New Traffic Congestion Detection and Quantification Method Based on Comprehensive Fuzzy Assessment in VANET

  • Rui, Lanlan;Zhang, Yao;Huang, Haoqiu;Qiu, Xuesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권1호
    • /
    • pp.41-60
    • /
    • 2018
  • Recently, road traffic congestion is becoming a serious urban phenomenon, leading to massive adverse impacts on the ecology and economy. Therefore, solving this problem has drawn public attention throughout the world. One new promising solution is to take full advantage of vehicular ad hoc networks (VANETs). In this study, we propose a new traffic congestion detection and quantification method based on vehicle clustering and fuzzy assessment in VANET environment. To enhance real-time performance, this method collects traffic information by vehicle clustering. The average speed, road density, and average stop delay are selected as the characteristic parameters for traffic state identification. We use a comprehensive fuzzy assessment based on the three indicators to determine the road congestion condition. Simulation results show that the proposed method can precisely reflect the road condition and is more accurate and stable compared to existing algorithms.

Impact Evaluation of DDoS Attacks on DNS Cache Server Using Queuing Model

  • Wang, Zheng;Tseng, Shian-Shyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권4호
    • /
    • pp.895-909
    • /
    • 2013
  • Distributed Denial-of-Service (DDoS) attacks towards name servers of the Domain Name System (DNS) have threaten to disrupt this critical service. This paper studies the vulnerability of the cache server to the flooding DNS query traffic. As the resolution service provided by cache server, the incoming DNS requests, even the massive attacking traffic, are maintained in the waiting queue. The sojourn of requests lasts until the corresponding responses are returned from the authoritative server or time out. The victim cache server is thus overloaded by the pounding traffic and thereafter goes down. The impact of such attacks is analyzed via the model of queuing process in both cache server and authoritative server. Some specific limits hold for this practical dual queuing process, such as the limited sojourn time in the queue of cache server and the independence of the two queuing processes. The analytical results are presented to evaluate the impact of DDoS attacks on cache server. Finally, numerical results are provided for further analysis.

A Basic Study on Marine Traffic Assessment in Mombasa Approach Channel-I

  • Otoi, Onyango Shem;Park, Young-Soo;Park, Jin-Soo
    • Journal of Navigation and Port Research
    • /
    • 제40권5호
    • /
    • pp.257-263
    • /
    • 2016
  • Mombasa is the principle port of Kenya, serving inland countries in Eastern and central Africa. Mombasa port has undergone a massive infrastructure upgrade and dredging works with an expectation that more vessels and large post Panamax ships will be able to enter Mombasa port. Therefore, it is vital to carry out a marine traffic risk assessment in order to quantify the degree of navigation safety needed in the Mombasa approach channel and also to evaluate the navigation risk imposed on transit traffic by local ferry traffic. In this paper, a marine traffic risk assessment is carried out using the IWRAP mk2, Environmental Stress (ES) model, and the PARK model. Risk assessment results show that Likoni area has an unacceptable stress/risk ranking at 20.7% by the ES model and 38.89% by the PARK model. The IWRAP mk2 model shows that the crossing area has the highest risk of crossing collision and the area at the entrance to the inner channel has a high risk of grounding. The conclusions derived from this study will provide the basis for proposing the most effective countermeasure to improve navigation safety in the Mombasa approach channel.

A Basic Study on Marine Traffic Assessment in Mombasa Approach Channel-I

  • Otoi, Onyango Shem;Park, Young-Soo;Park, Jin-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 한국항해항만학회 2016년도 춘계학술대회
    • /
    • pp.81-84
    • /
    • 2016
  • Mombasa is the principle port of Kenya, serving hinter countries in Eastern and central Africa. Mombasa port has undergone a massive infrastructure upgrade and dredging works with an expectation that more vessels and large post Panamax ships will be able to call at Mombasa port. Therefore, it is vital to carry out a marine traffic risk assessment so as to quantify the degree of navigation safety on Mombasa approach channel and also to evaluate navigation risk imposed on transit traffic by local ferry traffic. In this paper marine traffic risk assessment is carried out using IWRAP mk2, Environmental Stress model, and PARK model. Risk assessment results show that Likoni area has unacceptable stress/ risk ranking at 20.7% on ES model and 38.89% by PARK model. IWRAP mk2 model shows that crossing area has the highest risk of crossing collision and the area at the entrance to inner channel has a high risk of grounding. The conclusions derived from this study will provide the basis for proposing the most effective countermeasure so as to improve navigation safety in Mombasa approach channel.

  • PDF

User and Antenna Joint Selection Scheme in Multiple User Massive MIMO Networks (다중 사용자 거대 다중 안테나 네트워크에서의 사용자 및 안테나 선택 기법)

  • Ban, Tae-Won;Jeong, Moo-Woong;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제19권1호
    • /
    • pp.77-82
    • /
    • 2015
  • Recently, multi-user massive MIMO (MU-Massive MIMO) network has attracted a lot of attention as a technology to accommodate explosively increasing mobile data traffic. However, the MU-Massive MIMO network causes a tremendous hardware complexity in a base station and computational complexity to select optimal set of users. In this paper, we thus propose a simple algorithm for selecting antennas and users while reducing the hardware and computational complexities simultaneously. The proposed scheme has a computational complexity of $O((N-S_a+1){\times}min(S_a,K))$, which is significantly reduced compared to the complexity of optimal scheme based on Brute-Force searching, $$O\left({_N}C_S_a\sum_{i=1}^{min(S_a,K)}_KC_i\right)$$, where N, $S_a$, and K denote the number of total transmit antennas, the number of selected antennas, and the number of all users, respectively.

Exploring Flow Characteristics in IPv6: A Comparative Measurement Study with IPv4 for Traffic Monitoring

  • Li, Qiang;Qin, Tao;Guan, Xiaohong;Zheng, Qinghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권4호
    • /
    • pp.1307-1323
    • /
    • 2014
  • With the exhaustion of global IPv4 addresses, IPv6 technologies have attracted increasing attentions, and have been deployed widely. Meanwhile, new applications running over IPv6 networks will change the traditional traffic characteristics obtained from IPv4 networks. Traditional models obtained from IPv4 cannot be used for IPv6 network monitoring directly and there is a need to investigate those changes. In this paper, we explore the flow features of IPv6 traffic and compare its difference with that of IPv4 traffic from flow level. Firstly, we analyze the differences of the general flow statistical characteristics and users' behavior between IPv4 and IPv6 networks. We find that there are more elephant flows in IPv6, which is critical for traffic engineering. Secondly, we find that there exist many one-way flows both in the IPv4 and IPv6 traffic, which are important information sources for abnormal behavior detection. Finally, in light of the challenges of analyzing massive data of large-scale network monitoring, we propose a group flow model which can greatly reduce the number of flows while capturing the primary traffic features, and perform a comparative measurement analysis of group users' behavior dynamic characteristics. We find there are less sharp changes caused by abnormity compared with IPv4, which shows there are less large-scale malicious activities in IPv6 currently. All the evaluation experiments are carried out based on the traffic traces collected from the Northwest Regional Center of CERNET (China Education and Research Network), and the results reveal the detailed flow characteristics of IPv6, which are useful for traffic management and anomaly detection in IPv6.

Low Complexity Zero-Forcing Beamforming for Distributed Massive MIMO Systems in Large Public Venues

  • Li, Haoming;Leung, Victor C.M.
    • Journal of Communications and Networks
    • /
    • 제15권4호
    • /
    • pp.370-382
    • /
    • 2013
  • Distributed massive MIMO systems, which have high bandwidth efficiency and can accommodate a tremendous amount of traffic using algorithms such as zero-forcing beam forming (ZFBF), may be deployed in large public venues with the antennas mounted under-floor. In this case the channel gain matrix H can be modeled as a multi-banded matrix, in which off-diagonal entries decay both exponentially due to heavy human penetration loss and polynomially due to free space propagation loss. To enable practical implementation of such systems, we present a multi-banded matrix inversion algorithm that substantially reduces the complexity of ZFBF by keeping the most significant entries in H and the precoding matrix W. We introduce a parameter p to control the sparsity of H and W and thus achieve the tradeoff between the computational complexity and the system throughput. The proposed algorithm includes dense and sparse precoding versions, providing quadratic and linear complexity, respectively, relative to the number of antennas. We present analysis and numerical evaluations to show that the signal-to-interference ratio (SIR) increases linearly with p in dense precoding. In sparse precoding, we demonstrate the necessity of using directional antennas by both analysis and simulations. When the directional antenna gain increases, the resulting SIR increment in sparse precoding increases linearly with p, while the SIR of dense precoding is much less sensitive to changes in p.

A File Name Identification Method for P2P and Web Hard Applications through Traffic Monitoring (트래픽 모니터링을 통한 P2P 및 웹 하드 다운로드 응용의 파일이름 식별 방법)

  • Son, Hyeon-Gu;Kim, Ki-Su;Lee, Young-Seok
    • Journal of KIISE:Information Networking
    • /
    • 제37권6호
    • /
    • pp.477-482
    • /
    • 2010
  • Recently, advanced Internet applications such as Internet telephone, multimedia streaming, and file sharing have appeared. Especially, P2P or web-based file sharing applications have been notorious for their illegal usage of contents and massive traffic consumption by a few users. This paper presents a novel method to identify the P2P or web-based file names with traffic monitoring. For this purpose, we have utilized the Korean decoding method on the IP packet payload. From experiments, we have shown that the file names requested by BitTorrent, Clubbox, and Tple applications could be correctly identified.

Deep Neural Network-Based Critical Packet Inspection for Improving Traffic Steering in Software-Defined IoT

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • 제22권6호
    • /
    • pp.1-8
    • /
    • 2021
  • With the rapid growth of intelligent devices and communication technologies, 5G network environment has become more heterogeneous and complex in terms of service management and orchestration. 5G architecture requires supportive technologies to handle the existing challenges for improving the Quality of Service (QoS) and the Quality of Experience (QoE) performances. Among many challenges, traffic steering is one of the key elements which requires critically developing an optimal solution for smart guidance, control, and reliable system. Mobile edge computing (MEC), software-defined networking (SDN), network functions virtualization (NFV), and deep learning (DL) play essential roles to complementary develop a flexible computation and extensible flow rules management in this potential aspect. In this proposed system, an accurate flow recommendation, a centralized control, and a reliable distributed connectivity based on the inspection of packet condition are provided. With the system deployment, the packet is classified separately and recommended to request from the optimal destination with matched preferences and conditions. To evaluate the proposed scheme outperformance, a network simulator software was used to conduct and capture the end-to-end QoS performance metrics. SDN flow rules installation was experimented to illustrate the post control function corresponding to DL-based output. The intelligent steering for network communication traffic is cooperatively configured in SDN controller and NFV-orchestrator to lead a variety of beneficial factors for improving massive real-time Internet of Things (IoT) performance.

A traffic control system to manage bandwidth usage in IP networks supporting Differentiated Service (차별화서비스를 제공하는 IP네트워크에서 대역폭관리를 위한 트래픽 제어시스템)

  • 이명섭;박창현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제29권3B호
    • /
    • pp.325-338
    • /
    • 2004
  • As the recent rapid development of internet technology and the wide spread of multimedia communication, massive increase of network traffic causes some problems such as the lack of network paths and the bad quality of service. To resolve these problems, this paper presents a traffic control agent that can perform the dynamic resource allocation by controlling traffic flows on a DiffServ network. In addition, this paper presents a router that can support DiffServ on Linux to support selective QoS in IP network environment. To implement a method for selective traffic transmission based on priority on a DiffServ router, this paper changes the queuing discipline in Linux, and presents the traffic control agent so that it can efficiently control routers, efficiently allocates network resources according to service requests, and relocate resources in response to state changes of the network. Particularly for the efficient processing of Assured Forwarding(AF) Per Hop Behavior(PHB), this paper proposes an ACWF$^2$Q$^{+}$ packet scheduler on a DiffServ router to enhance the throughput of packet transmission and the fairness of traffic services.s.