This paper embodies the agent based cinder monitoring system which supports PDA{Personal Digital Assistant). Monitoring system automatically manages data by using data managing agents such as a state managing agent, a location managing agent, a badness managing agent, a circumstances managing agent, etc, and uses a massive data processing agent to manage massive data. The development of agent based data monitoring system for the stable cinder reuse will be an epoch-making method to develop the process mechanized or manual-labored that widely spreads into the real-time automated process.
Recent advances in model acquisition, computer-aided design, and simulation technologies have resulted in massive databases of complex geometric data occupying multiple gigabytes and even terabytes. In various graphics/geometric applications, the major performance bottleneck is typically in accessing these massive geometric data due to the high complexity of such massive geometric data sets. However, there has been a consistent lower growth rate of data access speed compared to that of computational processing speed. Moreover, recent multi-core architectures aggravate this phenomenon. Therefore, it is expected that the current architecture improvement does not offer the solution to the problem of dealing with ever growing massive geometric data, especially in the case of using commodity hardware. In this tutorial, I will focus on two orthogonal approaches--multi-resolution and cache-coherent layout techniques--to design scalable graphics/geometric algorithms. First, I will discuss multi-resolution techniques that reduce the amount of data necessary for performing geometric methods within an error bound. Second, I will explain cache-coherent layouts that improve the cache utilization of runtime geometric applications. I have applied these two techniques into rendering, collision detection, and iso-surface extractions and, thereby, have been able to achieve significant performance improvement. I will show live demonstrations of view-dependent rendering and collision detection between massive models consisting of tens of millions of triangles on a laptop during the talk.
최근 위성 기반 윈격 탐사 기술의 발전과 더불어 대용량 위성 자료를 효율적으로 처리하기 위한 능력이 요구되고 있다. 이 연구에서는 대용량 GOCI 산출물을 효율적으로 재처리하기 위해 서버가상화와 분산처리를 기반으로 한 GOCI 산출물 재처리 시스템(GOCI Products Re-processing System; GPRS)을 개발하는데 집중하였다. 실험 결과 GPRS를 이용하여 메모리 및 CPU의 사용률을 각각 약 100%, 75%까지 올릴 수 있었다. 이는 제안 시스템을 통해 하드웨어 자원을 절약함과 동시에 작업 처리 속도를 향상시킬 수 있다는 것을 의미한다.
With the widespread use of smartphones and IoT (Internet of Things), data are being generated on a large scale, and there is increased for the analysis of such data. Hence, distributed processing systems have gained much attention. Hadoop, which is a distributed processing system, saves the metadata of stored files in name nodes; in this case, the main problems are as follows: the memory becomes insufficient; load occurs because of massive small files; scheduling and file processing time increases because of the increased number of small files. In this paper, we propose a solution to address the increase in processing time because of massive small files, and thus improve the processing performance, using the Reuse JVM method provided by Hadoop. Through environment setting, the Reuse JVM method modifies the JVM produced conventionally for every task, so that multiple tasks are reused sequentially in one JVM. As a final outcome, the Reuse JVM method showed the best processing performance when used together with CombineFileInputFormat.
Journal of information and communication convergence engineering
/
제7권2호
/
pp.199-202
/
2009
Adaptive memory management is a serious issue in data stream management. Data stream differ from the traditional stored relational model in several aspect such as the stream arrives online, high volume in size, skewed data distributions. Data skew is a common property of massive data streams. We propose the predicted allocation strategy, which uses predictive processing to cope with time varying data skew. This processing includes memory usage estimation and indexing with timestamp. Our experimental study shows that the predictive strategy reduces both required memory space and latency time for skewed data over varying time.
사용자로그는 많은 숨겨진 정보를 포함하고 있지만 데이터 정형화가 이루어지지 않았고, 데이터 크기도 너무 방대하여 처리하기 까다로워서 아직 밝혀져야 할 부분들을 많이 내포하고 있다. 특히 행동마다의 모든 시간정보를 포함하고 있어서 이를 응용하여 많은 부분을 밝혀낼 수 있다. 하지만 로그데이터 자체를 바로 분석으로 사용할 수는 없다. 유저 행동 모델 분석을 위해서는 별도의 프레임워크를 통한 변환과정들이 필요하다. 이 때문에 유저 행동모델 분석 프레임워크를 먼저 파악을 하고 데이터에 접근해야 한다. 이 논문에서는, 우리는 유저 행동모델을 효과적으로 분석하기 위한 프레임워크 모델을 제안한다. 본 모델은 대규모 데이터를 빨리 처리하기 위한 분산환경에서의 MapReduce 프로세스와 유저별 행동분석을 위한 데이터 구조 설계에 대한 부분을 포함한다. 또한 실제 온라인 서비스 로그의 구조를 바탕으로 어떤 방식으로 MapReduce를 처리하고 어떤 방식으로 유저행동모델을 분석을 위해 데이터 구조를 어떤식으로 변형할지 설명하고, 이를 통해 어떤 방식의 모델 분석으로 이어질지에 대해 상세히 설명한다. 이를 통해 대규모 로그 처리방법과 분석모델 설계에 대한 기초를 다질 수 있을 것이다.
In transmitting and receiving such a large amount of data, reliable data communication is crucial for normal operation of a device and to prevent abnormal operations caused by errors. Therefore, in this paper, it is assumed that an error correction code (ECC) that can detect and correct errors by itself is used in an environment where massive data is sequentially received. Because an embedded system has limited resources, such as a low-performance processor or a small memory, it requires efficient operation of applications. In this paper, we propose using an accelerated ECC-decoding technique with a graphics processing unit (GPU) built into the embedded system when receiving a large amount of data. In the matrix-vector multiplication that forms the Hamming code used as a function of the ECC operation, the matrix is expressed in compressed sparse row (CSR) format, and a sparse matrix-vector product is used. The multiplication operation is performed in the kernel of the GPU, and we also accelerate the Hamming code computation so that the ECC operation can be performed in parallel. The proposed technique is implemented with CUDA on a GPU-embedded target board, NVIDIA Jetson TX2, and compared with execution time of the CPU.
NAND 플래시 메모리를 이용한 카드가 보편화되어 이제는 대량의 멀티미디어 데이터를 모두 저장할 수 있는 수준에 이르렀다. 하지만 NAND 플래시 셀(cell)의 느린 동작으로 인하여 대량의 데이터를 빠르게 전송하기에는 많이 부족한 수준이다. 즉 대량의 멀티미디어 데이터를 NAND 플래시 메모리 카드로 전송할 경우 많은 시간이 걸리는 단점이 있다. 이에 본 논문에서는 데이터 전송률을 높이기 위한 새로운 하드웨어 및 소프트웨어의 구조를 제안한다. 제안하는 구조에서는 기존의 직렬 처리(serial processing) 기법과 다른, 다중 처리(multiprocessing) 기법을 사용하였다. 제안된 구조를 이용하여 VIP(Virtual IP) 환경에서 시뮬레이션하고 FPGA 보드환경에서 최종 실험하였다. 실험 결과 VIP환경에서는 160MB/s의 다운로드 성능을 볼 수 있었으며, FPGA 보드환경에서는 85.3MB/s의 다운로드 성능을 볼 수 있었다.
최근 컴퓨터 비전의 활용 영역이 증가함에 따라 컴퓨터 비전의 대표적인 라이브러리인 openCV의 사용 또한 증가하는 추세이다. openCV 에는 컴퓨터 비전 알고리즘의 특성상 massive 한 연산을 수행해야 하는 부분이 상당수 존재한다. 본 논문은 이러한 연산량의 부담을 줄임으로써 openCV 의 성능 향상을 위한 아키텍처를 연구한다. openCV 의 massive 한 연산은 라이브러리 함수에 있는 내부 반복문에서 발생하기 때문에, 본 논문은 반복문의 특성을 분석하고 이를 가속할 수 있는 아키텍처가 무엇인지 연구한다. 결론적으로 반복문의 각 iteration 이 독립적일 경우에는 SIMD (Single Instruction Multiple Data)와 SIMT (Single Instruction Multiple Thread)이 적합하며 반복문의 각 iteration 이 의존적일 경우에는 MIMD (Multiple Instruction Multiple Data)를 바탕으로 하는 파이프라인 아키텍처가 적합하다.
Current graph mining algorithms suffers from performance issues when querying patterns are in increasingly massive network graphs. However, from our observation most data graphs inherently contains recurring semantic subgraphs/substructures. Most graph mining algorithms treat them as independent subgraphs and perform computations on them redundantly, which result in performance degradation when processing massive graphs. In this paper, we propose an algorithm which exploits these inherent recurring subgraphs/substructures to reduce graph sizes so that redundant computations performed by the traditional graph mining algorithms are reduced. Experimental results show that our graph compression approach achieve up to 69% reduction in graph sizes over the real datasets. Moreover, required time to construct the compressed graphs is also reasonably reduced.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.