• Title/Summary/Keyword: MassSpring Simulation

Search Result 157, Processing Time 0.026 seconds

Simulation for the Flowing Water Purification with Spring Shape Inside Chamber (챔버 내측에 스프링형상을 갖는 유수형 자외선 살균장치 시뮬레이션)

  • Jung, Byung-Gyeon;Jeong, Byeong-Ho;Lee, Jin-Jong;Jung, Byeong-Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.411-416
    • /
    • 2010
  • Interest in application of ultraviolet light technology for primary disinfection of potable water in drinking water treatment plants has increased significantly in recent years. The efficacy of disinfection processes in water purification systems is governed by several key factors, including reactor hydraulics, disinfectant chemistry, and microbial inactivation kinetics. The objective of this work was to develop a computational fluid dynamics(CFD) model to predict velocity fields, mass transport, chlorine decay, and microbial inactivation in a continuous flow reactor. In this paper, It describe the how to design optimal UV disinfection device for ground water, BWT and rainwater. Spring shape instrument silver coated located in inner side of disinfection chamber. It make lead the active flowing movement target water and maximize disinfection performance. To search the optimal design method, it was performed computer simulation with 3D-CFD discrete ordinates model and manufactured prototype. Using proposed design method, performed simulation and proved satisfied performance.

An Optimized Model for the Local Compression Deformation of Soft Tissue

  • Zhang, Xiaorui;Yu, Xuefeng;Sun, Wei;Song, Aiguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.671-686
    • /
    • 2020
  • Due to the long training time and high training cost of traditional surgical training methods, the emerging virtual surgical training method has gradually replaced it as the mainstream. However, the virtual surgical system suffers from poor authenticity and high computational cost problems. For overcoming the deficiency of these problems, we propose an optimized model for the local compression deformation of soft tissue. This model uses a simulated annealing algorithm to optimize the parameters of the soft tissue model to improve the authenticity of the simulation. Meanwhile, although the soft tissue deformation is divided into local deformation region and non-deformation region, our proposed model only needs to calculate and update the deformation region, which can improve the simulation real-time performance. Besides, we define a compensation strategy for the "superelastic" effect which often occurs with the mass-spring model. To verify the validity of the model, we carry out a compression simulation experiment of abdomen and human foot and compare it with other models. The experimental results indicate the proposed model is realistic and effective in soft tissue compression simulation, and it outperforms other models in accuracy and real-time performance.

Dynamic simulation of a Purse seine net behavior for hydrodynamic analysis (유체역학적 해석을 위한 선망 어구 운동의 동적 시뮬레이션)

  • 김현영;이춘우;차봉진;김형석;권병국
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.2
    • /
    • pp.172-178
    • /
    • 2002
  • This study presents a dynamic simulation of a purse seine net behavior Mathematical model suitable for purse seining, which is based on data from a series of previous simulations, various field experiments, is modelized as a set of mass-spring system. In this model, a number of meshes are approximated as one mass point, each of which connected to its neighbors by massless springs, the equations of motion are derived from considering internal force from the springs and external forces such as resistance and gravitation. This simulation shows the quantitative state on every mass point of the net and purse line during the shooting and pursing phases. So it is possible that performance of a purse seine net be analyzed using various and evolving parameters such as the shooting speed, the hauling speed, the size or type of the sinker, float and twine, also the hanging ratio etc.

Review of Regulation for Rollover Test and Evaluation of Safety for Buses by using Simulation of Multi-body Dynamics (다물체 동역학 시뮬레이션을 통한 버스의 전복 시험 규정과 안전성 평가에 관한 고찰)

  • Park, Seung Woon;Choi, Yo Han;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.19 no.3
    • /
    • pp.39-46
    • /
    • 2022
  • In South Korea, to evaluate the rollover safety of domestic vehicles, the maximum slope angle of the vehicle is specified, which is verified by the rollover safety test of driving vehicles. However, the domestic rollover safety test is not suitable for buses, because the small amount of static stability factor (SSF) will invalidate the rollover experimental equation due to the high center of mass position of buses. To solve the above problems, a dynamic model of the bus is prepared with assumptions of mass and suspension spring properties. Subsequently, the maximum slope angle of the model was computed by using the simulation of multi-body dynamics, and the result was compared with actual test results to validate the dynamics model. Also, the rollover Fishhook (roll stability) test was conducted in the simulation for driving model. During the simulation, roll angle and roll rate were calculated to check if a rollover occurred. Through the rollover simulation of buses, the domestically regulated formula for rollover safety and the procedure of rollover test for driving vehicles are evaluated. The conclusion is that the present regulation of rollover test should be reconsidered for buses to ensure to get the valid results for rollover safety.

A Study on a dynamic simulation of Current Collection System (집전시스템의 동적 수치모의 해석에 관한 연구)

  • Hur, S.;kyung, J.H.;Han, H.S.;Song, D.H.;Park, S.H.;Kim, J.S.
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.151-158
    • /
    • 1999
  • In this study, we developed the simulation program of an overhead catenary-pantograph system, The overhead catenary is modeled with point mass and the pantograph is replaced with 3 d. o. f. model which is composed of mass, spring and damper. Using the developed program, we analyzed the static structure of the overhead catenary and the dynamic characteristics of an overhead catenary-pantograph system such as uplift displacement of contact wire and contact force. we compared the analysis results with the results of GASENDO software developed at RTRI in Japan. The behaviors of uplift displacement of contact wire and contact force were similar with the results of GASENDO software.

  • PDF

Characterization of Electromechanical Properties and Mass Effect of PZT Microcantilever (MEMS 공정에 의해 제작된 PZT 마이크로 켄틸레버의 전기기계적 거동 및 질량에 대한 공진특성 분석)

  • 황교선;이정훈;박정호;김태송
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.2
    • /
    • pp.116-122
    • /
    • 2004
  • A micromachined self-exited piezoelectric cantilever has been fabricated using PZT(52/48) thin film. For the application to biosensor using antigen-antibody interaction, electromechanical properties such as resonant frequency and quality factor of micromachined piezoelectric cantilever were important factors. Electromechanical properties and resonant behaviors of microfabricated cantilever were simulated by FEA (Finite Element Analysis) using Coventorware$^{TM}$2003. And these characterization of microcantilever were measured by using LDV(Laser Doppler Vibrometer) to compare with FEA data. We present the resonant frequency shift of micromachined piezoelectric cantilevers due to combination of mass loading and change of spring constant by gold deposition. Experimental mass sensitivities of microcantilever were characterized by Au deposition on the backside of microcantilever. Mass sensitivities with $100{\times}300$ ${\mu}{\textrm}{m}$ dimension cantilever from simulation and experimental were 5.56 Hz/ng and 16.8 Hz/ng respectively.y.

Effect of Control Valve Flow Rates Characteristics on the Performance of an Air Spring (제어밸브의 유량특성에 따른 에어스프링의 성능 변화)

  • Han, Seung Hun;Jang, Ji Seong;Ji, Sang Won
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.8-14
    • /
    • 2016
  • This study describes the effect of the critical pressure ratio of a control valve on the performance of an air spring system composed of an air spring, auxiliary chamber, control valve and mass in order to suggest a more efficient design for an air spring system. The critical pressure ratio of the control valve is assumed to have a fixed value, but the critical pressure ratio of the control valve is known to have various values between 0.05 and 0.6, and the effect of the variation of the critical pressure ratio on the performance of the air spring system has not yet been reported. The analysis derives nonlinear and linear governing equations of the air spring system, including the critical pressure ratio of the control valve. This simulation study is presented to show that the impedance and transmissibility characteristics of the air spring system change due to variations in the critical pressure ratio of the control valve as well as its sonic conductance. As a result, the critical pressure ratio of the control valve should be maintained as large as possible to improve the vibration isolation characteristics of the air spring system.

Design and Performance Analysis of Lateral Type MEMS Inertial Switch (수평 구동형 MEMS 관성 스위치 설계 및 성능해석)

  • Gim, Hakseong;Jang, Seung-gyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.523-528
    • /
    • 2020
  • A lateral type MEMS inertial switch was designed on the same principle as spring-mass system. The MEMS switch is used for arming mechanism of the arm-fire device by sensing the applied acceleration. We analyzed the switching capability of the MEMS switch under various acceleration conditions via performance model. Simulation results showed that the MEMS switch works very well at 10 g when the applied acceleration slope does not exceed 10 g/msec. On the other hand, the threshold operating acceleration level simulation exceeded the requirement (10±2 g) due to the width and length of the spring by considering 10% tolerance of the design values. Design modification of doubling the width of the spring, which is difficult to reduce less than 10% tolerance in fabrication process, was proposed after confirming the simulation results comply the requirement.

A semi-active smart tuned mass damper for drive shaft

  • Cai, Q.C.;Park, J.H.;Lee, C.H.;Park, J.L.;Yoon, D.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.349-354
    • /
    • 2011
  • Tuned mass damper is widely used in many applications of industry. The main advantage of tuned mass damper is that it can increase the damping ratio of system and reduce the vibration amplitude. Meanwhile, the natural frequency of system will be divided by two peaks, and the peak speeds are closely related to the mass and the stiffness of auxiliary mass system added. In addition, the damping ratio will also affect the peak frequency of the dynamic response. In the present research, the nonlinear mechanical characteristics of rubber is investigated and put into use, since it is usually manufactured as the spring element of tuned mass damper. By the sense of the nonlinear stiffness as well as the damping ratio which can be changed by preload applied on, the shape memory alloy is proposed to control the auxiliary mass system by self-optimizing. Supported by the experiment data of rubber, the 1 DOF theoretical model and finite element model based on computer simulation are implemented to perform the feasibility of the proposed semi-active tuned mass damper working on the drive shaft.

  • PDF

Improvement of Sense Mode Bandwidth of Vibratory Silicon-On-Glass Gyroscope Using Dual-Mass System (이중 질량체를 사용한 진동형 자이로스코프의 검출부 대역폭 개선)

  • Hwang, Yong-Suk;Kim, Yong-Kweon;Ji, Chang-Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1733-1740
    • /
    • 2011
  • In this research, a MEMS vibratory gyroscope with dual-mass system in the sensing mode has been proposed to increase the stability of the device using wide bandwidth. A wide flat region between the two resonance peaks of the dual-mass system removes the need for a frequency matching typically required for single mass vibratory gyroscopes. Bandwidth, mass ratio, spring constant, and frequency response of the dual-mass system have been analyzed with MATLAB and ANSYS simulation. Designed first and second peaks of sensing mode are 5,917 and 8,210Hz, respectively. Driving mode resonance frequency of 7,180Hz was located in the flat region between the two resonance peaks of the sensing mode. The device is fabricated with anodically bonded silicon-on-glass substrate. The chip size is 6mm x 6mm and the thickness of the silicon device layer is $50{\mu}m$. Despite the driving mode resonance frequency decrease of 2.8kHz and frequency shift of 176Hz from the sensing mode due to fabrication imperfections, measured driving frequency was located within the bandwidth of sensing part, which validates the utilized dual-mass concept. Measured bandwidth was 768Hz. Sensitivity calculated with measured displacement of driving and sensing parts was 22.4aF/deg/sec. Measured slope of the sensing point was 0.008dB/Hz.