• Title/Summary/Keyword: Mass-spring system

Search Result 439, Processing Time 0.035 seconds

On Development of Vibration Analysis Algorithm of Beam with Multi-Joints(II) (다관절 보의 진동해석 알고리즘 개발에 관한 연구 II)

  • 문덕홍;최명수;홍승수;강현석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.203-209
    • /
    • 1996
  • The authors apply the transfer influence coefficient method to the 3-dimensional vibration analysis of beam with multi-joints and formulate a general algorithm to analysis the longitudinal, flexural and torsional coupled forced vibration. In this paper, a structure, which is mainly founded in the robot arms, cranes and so on, has some crooked parts, subsystems and joints but has no closed loop in this system. It is modeled as the beam of a distributed mass system with massless translational, rotational and torsional springs in each node, and joint elements of release or roll at which node the displacement vector is discontinuous. The superiority of the present method to the transfer matrix method in the computation accuracy was confirmed from the numerical computation results. Moreover, we confirmed that boundary and intermediate conditions could be controlled by varying the values of the spring constants.

  • PDF

PID-Force Control of a Artificial Finger with Distributed Force Sensor and Piezoelectric Actuator (분포센서를 가진 인공지의 PID-힘 제어)

  • Lee, Jae-Jung;Hong, Dong-Pyo;Chung, Tae-Jin;Chonan, Seiji;Chong, Kil-To;No, Tae-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.94-103
    • /
    • 1996
  • This paper is concerned with the theroretical and experimental study on the force control of a miniature robotic finger that grasps an object at three other positions with the fingertip. The artificial finger is uniform flexible cantilever beam equipped with a distributed set of compact grasping force secnsors. Control action is applied by a qiexoceramic bimorph strip placed at the base of the finger. The mathematical model of the assembled electro-mechanical system is developed. The distributed sensors are described by a set of concentrated mass-spring system. The formulated equations of motion are then applied to a control problem which the finger is commanded to grasp an object The PID-controller is introduced to drive the finger. The usefulness of the proposed control technique is verified by simulation and experiment.

  • PDF

IDENTIFICATINO OF DYNAMIC PARAMETER OF THE RUBBER CRAVLES SYSTEM FOR FARM MACHINERY

  • Inoue, Eiji;Konya, Hideyuki;Hirai, Yasumaru;Noguchi, Ryozo;Hashiguchi, Koichi;Choe, Jung-Seob
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.146-153
    • /
    • 2000
  • The rubber crawler system for farm machine is composed of driving units such as track rollers, driving sprockets and rubber crawlers. Vibration characteristics of the rubber crawler system varies by driving speed, center of gravity, mass□moment of inertial□location arrangement of track rollers and dynamic parameters such as dynamic spring constant (k) and viscous damping coefficient (c) of a rubber crawler. In general, vibration of the rubber crawler system occurs by reason for mechanical interaction between the rubber crawler and track rollers. Because the dynamic spring constant and viscous damping coefficient vary periodically by mechanical characteristics(deformation characteristics) of the rubber crawler when track rollers drive on the between lugs of the rubber crawler. Therefore, both dynamic parameters k and c were expressed as Fourier series by authors through the shaking test of the rubber crawler and further, vibration characteristics of the rubber crawler system could be simulated analytically. However, actual values of dynamic parameters k and c are different from those obtained by the shaking test because dynamic characteristics of the rubber crawler vary by the effect of variable tension and driving resistance of track rollers. So, actual values of k and c should be identified in the condition of actual driving test. In this study, dynamic parameters such as k and c of the rubber crawler system, which are expressed as Fourier series, were identified using the Gauss-Newton Method. Therefore, validity of identified parameters k and c was discussed through the simulation using experimental data of actual driving test. As a result, in the Fourier series of dynamic parameters of spring constant k and viscous damping coefficient c, excellent parameter convergence and simulation were observed using the Fourier series' zero order and first term of the dynamic model. Furthermore, it was clarified that identification for model parameters which are fitted to actual dynamic motion (vibration) wave of the crawler system was possible by using the time series data observed in vertical and pitching motion of the crawler system.

  • PDF

A Development of Semi-automatic Trawl-net Surfaces Reconstruction System using Motion Equations and User Interactions (운동 방정식과 사용자 상호작용을 적용한 반자동 트롤 그물 표면 재구축 시스템 개발)

  • Yoon, Joseph;Park, Keon-Kuk;Kwon, Oh-Seok;Kim, Young-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1447-1455
    • /
    • 2017
  • In a trawl-net simulation, it is very important to process the physical phenomenons resulting from real collisions between a net and fishes. However, because it is very difficult to reconstruct the surface with mass points, many researchers have generally detect the collision using an approximation model employing a sphere, a cube or a cylinder. These approaches occur often result in inaccurate movements of a fish due to the difference between a real-net and a designed-net. So, many systems have manually adjusted a net surface based on actual measurements of mass points. These methods are very inefficient because it needs much times in an adjustment and also causes more incorrect inputs according to a rapid increment in the number of points. Therefore, in this paper, we propose a reconstruction method that it semi-automatically reconstructed trawl-net surfaces using the equation of motion at each mass point in a mass-spring model. To get an easy start in a beginning step of the spread, it enables users to get interactive adjustment on each mass point. We had designed a trawl-net model using geometrical structures of trawl-net and then automatically reconstructed the trawl-net surface using scale-space meshing techniques. Last, we improve the accuracy of reconstructed result by correction user interaction.

Implementation of Markerless Augmented Reality with Deformable Object Simulation (변형물체 시뮬레이션을 활용한 비 마커기반 증강현실 시스템 구현)

  • Sung, Nak-Jun;Choi, Yoo-Joo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.17 no.4
    • /
    • pp.35-42
    • /
    • 2016
  • Recently many researches have been focused on the use of the markerless augmented reality system using face, foot, and hand of user's body to alleviate many disadvantages of the marker based augmented reality system. In addition, most existing augmented reality systems have been utilized rigid objects since they just desire to insert and to basic interaction with virtual object in the augmented reality system. In this paper, unlike restricted marker based augmented reality system with rigid objects that is based in display, we designed and implemented the markerless augmented reality system using deformable objects to apply various fields for interactive situations with a user. Generally, deformable objects can be implemented with mass-spring modeling and the finite element modeling. Mass-spring model can provide a real time simulation and finite element model can achieve more accurate simulation result in physical and mathematical view. In this paper, the proposed markerless augmented reality system utilize the mass-spring model using tetraheadron structure to provide real-time simulation result. To provide plausible simulated interaction result with deformable objects, the proposed method detects and tracks users hand with Kinect SDK and calculates the external force which is applied to the object on hand based on the position change of hand. Based on these force, 4th order Runge-Kutta Integration is applied to compute the next position of the deformable object. In addition, to prevent the generation of excessive external force by hand movement that can provide the natural behavior of deformable object, we set up the threshold value and applied this value when the hand movement is over this threshold. Each experimental test has been repeated 5 times and we analyzed the experimental result based on the computational cost of simulation. We believe that the proposed markerless augmented reality system with deformable objects can overcome the weakness of traditional marker based augmented reality system with rigid object that are not suitable to apply to other various fields including healthcare and education area.

Forced Vibration Analysis of Engine Resilient Mounting System Modelled with Multi-mass and Multi-degree-of-freedom (다질점계로 모델링한 기관 탄성지지계의 강제진동 해석에 관한 연구)

  • 김성춘;김창남;변용수;김의간
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.775-782
    • /
    • 2000
  • Being carried out a number of studies for the resilient mounting system of automobile engine than that of the studies for marine engines, many research results for the case of the resilient mounting system of the automobile engine have applied in the analysis for the case of marine engine. However, the size and the power of automobile engines are not only relatively small but also their operating conditions are quite different form those of marine engines. For the analysis of the automobile engine Wavelet shrinkage, misfire condition and unload condition have not been considered. Accordingly , it is not desirable to apply the results obtained form the case of automobile engines to the case of marine engines. In this study , exciting and damping forces working on the marine engine are formulated mathematically in order to apply to the design of a resilient mounting system of engine effectively. futhermore, some mathematical formulation for the analysis of the transmissibility of multi-body system are proposed. A new computer program which is able to calculate the free vibration, the transmissibility and the forced vibration of a resilient mounting system has been developed, As an application of this developed computer program, the dynamic behavior of resilient system with an actual rubber spring for the case of 6-degree-of-freedom system and 36-degree-of-freedom system are evaluated quantitatively.

  • PDF

Simultaneous out-of-plane and in-plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers

  • Zuo, Haoran;Bi, Kaiming;Hao, Hong
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.435-449
    • /
    • 2020
  • To effectively extract the vast wind resource, offshore wind turbines are designed with large rotor and slender tower, which makes them vulnerable to external vibration sources such as wind and wave loads. Substantial research efforts have been devoted to mitigate the unwanted vibrations of offshore wind turbines to ensure their serviceability and safety in the normal working condition. However, most previous studies investigated the vibration control of wind turbines in one direction only, i.e., either the out-of-plane or in-plane direction. In reality, wind turbines inevitably vibrate in both directions when they are subjected to the external excitations. The studies on both the in-plane and out-of-plane vibration control of wind turbines are, however, scarce. In the present study, the NREL 5 MW wind turbine is taken as an example, a detailed three-dimensional (3D) Finite Element (FE) model of the wind turbine is developed in ABAQUS. To simultaneously control the in-plane and out-of-plane vibrations induced by the combined wind and wave loads, another carefully designed (i.e., tuned) spring and dashpot are added to the perpendicular direction of each Tuned Mass Damper (TMD) system that is used to control the vibrations of the tower and blades in one particular direction. With this simple modification, a bi-directional TMD system is formed and the vibrations in both the out-of-plane and in-plane directions are simultaneously suppressed. To examine the control effectiveness, the responses of the wind turbine without control, with separate TMD system and the proposed bi-directional TMD system are calculated and compared. Numerical results show that the bi-directional TMD system can simultaneously control the out-of-plane and in-plane vibrations of the wind turbine without changing too much of the conventional design of the control system. The bi-directional control system therefore could be a cost-effective solution to mitigate the bi-directional vibrations of offshore wind turbines.

A Study on a Laser Scanning Vibrometer Using a Magnetostrictive Resonant Device (자기 변형 공진 기구를 이용한 레이저 스캐닝 진동측정기에 관한 연구)

  • 이정화;류제길;박기환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.58-66
    • /
    • 1998
  • A low power consuming laser scanning vibrometer is studied for its development. For its optical system, a laser interferometer is constructed to use the Doppler effect. In order to reduce the driving power of the scanning system, a small displacement of the scanning system is produced, which is achieved by using a magnetostrictive actuator. A sufficient rotating angle of the scanning system is obtained by using an amplified displacement from the resonant phenomena of a second order mechanical system composed of a mass and spring. The control of the magnetostrictive actuator using a Terfenol-D is performed without using a feedback system to help reduce the power consumption. The vibration analysis is made for the sinusoidal scanning input to have the space domain information from the time domain of the velocity of a vibration object. As a partial work of development of a tow power consuming laser scanning vibrometer, in this work, a scanning system which has the above features is developed and experimentally investigated. For the purpose of the optical system calibration, the vibration measurement for one axis is presented and the future works are discussed.

  • PDF

A Study on 2D Pattern Design Module and 3D Cloth Simulation System based on Octree Space Subdivision Method (2차원 패턴 디자인 모듈과 Octree 공간 분할 방법을 이용한 3차원 의복 시뮬레이션 시스템에 관한 연구)

  • Kim, Ju-Ri;Joung, Suck-Tae;Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.4
    • /
    • pp.527-536
    • /
    • 2007
  • This paper proposes a 3D fashion design system that generates a 3D clothes model by using 2D patterns of clothes and drapes the 3D clothes model on a 3D human model. In the proposed system, 2D patterns of clothes are designed by selecting comer points of 2D mesh. After designing 2D patterns, a 3D clothes model is designed by describing the control points to be connected between 2D patterns. The proposed system reads a 3D human body model file and the designed 3D clothes model and creates a 3D human model putting on the clothes by using the mass-spring model based physical simulation. It calculates collision and reaction between the triangles of human body model and those of clothes for realistic simulation. Because the number of triangles is very large, the collision and reaction processing need a lot of time. To solve this problem, the proposed system decreases the number of collision and reaction processing by using the Octree space subdivision technique. It took a few seconds for generating a 3D human model putting on the designed 3D clothes.

  • PDF

Dynamic Modeling and Observer-based Servomechanism Control of a Towing Rope System

  • Tran, Anh Minh D.;Kim, Young Bok
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.23-30
    • /
    • 2016
  • This paper presents a control-oriented dynamical model of a towing rope system with variable-length. In this system, a winch driven by a motor's torque uses the towing rope to pull a cart. In general, it is a difficult and complicated process to obtain an accurate mathematical model for this system. In particular, if the rope length is varied by operating the winch, the varying rope dynamics needs to be considered, and the key physical parameters need to be re-identified... However, real time parameter identification requires long computation time for the control scheme, and hence undesirable control performance. Therefore, in this article, the rope is modeled as a straight massless segment, with the mass of rope being considered partly with that of the cart, and partly as halfway to the winch. In addition, the changing spring constant and damping constant of the towing rope are accounted for as part of the dynamics of the winch. Finally, a reduced-order observer-based servomechanism controller is designed for the system, and the performance is evaluated by computer simulation.