• Title/Summary/Keyword: Mass-spring model

Search Result 322, Processing Time 0.023 seconds

Integrated Displacement Feedback Control of a Self-levelling System (셀프레벨링 시스템을 위한 변위적분 피드백 제어 연구)

  • Lee, Young-Sup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1317-1326
    • /
    • 2008
  • This paper presents a self.levelling system for a mass, which undergoes a severe acceleration, with integrated displacement feedback control. After a general description of such a system, theoretical analysis is investigated to design an active control device. The self-levelling system can be used to reduce the "quasi-static" deflection while isolating the "dynamic" vibration. A computer simulation model of 45 kg with two air spring mounts is considered to predict the performance of the control system. Important control parameters were acquired to meet the requirement of the system. The results showed the controller can reduce the displacement of the mass to the level of about 1/5 after control. Thus the self-levelling system can be applied usefully to reduce the displacement of a mass which experiences a high g dynamics.

Mathematical Model for a Mode-sequence Reversed Two-degrees-of-freedom Piezoelectric Vibration Energy Harvester (모드 순서 전환된 2자유도계 압전 진동 에너지 수확 장치의 수학적 모델)

  • Lee, Sowon;Kim, Yoon Young;Kim, Jae Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.546-552
    • /
    • 2013
  • A cantilevered piezoelectric energy harvester(PEH) and an auxiliary mass-spring unit can be integrated into a novel two-degrees-of-freedom PEH where its lowest eigenmode is not an in-phase modes but an out-of-phase mode. This typical behavior was shown to enhance output power considerably compared with its stand-alone counterpart. The objective of this study is to newly develop a continuum-based mathematical model suitable for efficient analysis of the mode-sequence reversed PEH. Once such a mathematical model is available, various physical behaviors can be analytically investigated for better designs. After a new mathematical model is developed, its validity is checked by using ANSYS results, in terms of resonant frequency, open-circuit voltage, and output power with a specified external resistance.

Mathematical Modelling of Happiness and its Nonlinear Analysis (행복의 수학적 모델링과 비선형 해석)

  • Kim, Soon-Whan;Choi, Sun-Koung;Bae, Young-Chul;Park, Young-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.6
    • /
    • pp.711-717
    • /
    • 2014
  • Happiness has been studied in sociology and psychology as a matter of grave concern. In this paper the happiness model that a new second -order systems can be organized equivalently with a Spring-Damper-Mass are proposed. This model is organized a 2-dimensional model of identically type with Duffing equation. We added a nonlinear term to Duffing equation and also applied Gaussian white noise and period sine wave as external stimulus that is able to cause of happiness. Then we confirm that there are random motion, periodic motion and chaotic motion according to parameter variation in the new happiness model.

Vibration Characteristics of Embedded Piles Carrying a Tip Mass (상단 집중질량을 갖는 근입 말뚝의 진동 특성)

  • Choi, Dong-Chan;Byun, Yo-Seph;Oh, Sang-Jin;Chun, Byung-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.405-413
    • /
    • 2010
  • The vibration characteristics of fully and partially embedded piles with flexibly supported end carrying an eccentric tip mass are investigated. The pile model is based on the Bernoulli-Euler theory and the soil is idealized as a Winkler model for mathematical simplicity. The governing differential equations for the free vibrations of such members are solved numerically using the corresponding boundary conditions. The lowest three natural frequencies and corresponding mode shapes are calculated over a wide range of non-dimensional system parameters: the rotational spring parameter, the relative stiffness, the embedded ratio, the mass ratio, the dimensionless mass moment of inertia, and the tip mass eccentricity.

Free Vibration Analysis of a Stepped Cantilever Beam with a Mass and a Spring at the End (끝단에 스프링과 질량을 가진 단진보의 자유진동해석)

  • Yu, Chun-Seung;Hong, Dong-Pyo;Chung, Tae-Jin;Chung, Kil-To
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2812-2818
    • /
    • 1996
  • A cantilever beam with a mass and a spring at the end can be use to model a miniature flexible arm. It is necessary to know the natural frequencies and mode shapes to discuss its free vibration, especially when modal analysis is employed. A beam is clamped-free. In this paper we look at the lateral vibration of beams that have step changes in the properties of their cross sections. The frequency equation is derived by Bernoulli-Euler formulation and is sloved by the separation of variable. The parameters of the beam, 'mass and spring stiffness' are defined as nondimensionalized parameters for wide application of the results. According to the change of eigenvalues and mode shape are presented for this beam. The results presented are the eigenvalues and the natural frequencies for the first three modes of vibration. Results show that the parameters have a significant effect on the natural frequency.

Analysis of optimum condition for the suspension system with torsion bar spring (Torsion bar spring을 가진 현수장치에 대한 최적조건 해석)

  • 손병진;신영철
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.40-45
    • /
    • 1982
  • The spring constant and damping coefficient are vital factors of ride comfort and driving stability in the vibration of the vehicle which is mainly induced by a variety of the surface irregularity. This paper reviewed the optimum condition of the damping factor derived from the typical model of two mass-two degrees of freedom. Through the evaluation and discussion, it was presented that the spring of the torsion bar type was not effective for the driving stability in the large displacement of the wheel, and also that the damper with progressive performance has to be fundamentally selected to meet the requirement of the driving suability when this kind of spring is used as a suspension system of the vehicle.

  • PDF

The Effects of the Human-body Stiffness on the Response of the Footbridge (사람의 강성이 교량의 거동에 미치는 영향)

  • 신혜린
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.261-266
    • /
    • 2000
  • This paper consider the effects of the human-body stiffness on the response of the footbridge to ground shaking by an earthquake. A mass-spring, suggested by Tianjian Ji(1999), describing the stiffness of the human body and an inert mass specified in the Code as the appropriate human whole-body model are used and the responses of the structure in both cases to ground shaking are were compared. Finally this paper ascertains whether the consideration of the human body as a mass is safe in the aseismic design.

  • PDF

A Study on the Fast Removement of Overlaps in Image Morphing Using Mass-Spring System (질량-스프링 시스템을 이용한 이미지 모핑의 빠른 겹침 제거 연구)

  • Choi, Do-Won;Hwang, Chi-Jung
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1262-1274
    • /
    • 2011
  • A fast and stable deformation model is essential for realistic simulation of image morphing. In order to stabilize deformation, we used two internal thin plate mass-spring systems that compute the displacements of the x- and y-components of all nodes on the mesh. The deformation results are globally smoother and more stable due to the direction limitation of thin plate mass-spring systems. One-to-one deformation is one of the important issues in image morphing. We focus on fast removing overlaps in the process of deformation. To rapidly remove overlaps, the external forces are set automatically on four or eight neighboring nodes. The speed of removing overlaps is faster when external forces are set on four or eight neighbouring nodes than when on two neighbouring nodes.

Analysis of Metal Transfer using Dynamic Force Balance Model in GMAW (동적 힘 평형 모델을 이용한 GMA 용접의 용적이행 해석)

  • 최재형;이지혜;유중돈
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.399-405
    • /
    • 2001
  • A dynamic force balance model is proposed in this work as an extension of the previous static force balance model to predict metal transfer in arc welding. Dynamics of a pendant drop is modeled as the second order system, which consists of the mass, spring and damper. The spring constant of a spherical drop at equilibrium is derived in the closed-form equation, and the inertia force caused by drop vibration is included in the drop detaching condition. While the inertia force is small in the low current range, it becomes larger than the gravitational force with current increase. The inertia force reaches half of the electromagnetic force at transition current, and has considerable effects on drop detachment. The proposed dynamic force balance model predicts the detaching drop size more accurately than the static force balance model.

  • PDF

Dynamic responses of structures with sliding base

  • Tsai, Jiin-Song;Wang, Wen-Ching
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.63-76
    • /
    • 1998
  • This paper presents dynamic responses of structures with sliding base which limits the translation of external loads from ground excitation. A discrete element model based on the discontinuous deformation analysis method is proposed to study this sliding boundary problem. The sliding base is simulated using sets of fictitious contact springs along the sliding interface. The set of contact spring is to translate friction force from ground to superstructure. Validity of the proposed model is examined by the closed-form solutions of an idealized mass-spring structural model subjected to harmonic ground excitation. This model is also applied to a problem of a three-story structural model subjected to the ground excitation of 1940 El Centro earthquake. Analyses of both sliding-base and fixed-base conditions are performed as comparisons. This study shows that using this model can simulate the dynamic response of a sliding structure with frictional cut-off quite accurately. Results reveal that lowering the frictional coefficient of the sliding joint will reduce the peak responses. The structure responses in little deformation, but it displaces at the end of excitation.