• 제목/요약/키워드: Mass-spring model

검색결과 322건 처리시간 0.028초

확률론적 특성을 갖는 선형 동적계의 과도 응답 해석 (Transient Response Analysis of Linear Dynamic System with Random Properties)

  • 김인학;독고욱
    • 전산구조공학
    • /
    • 제10권3호
    • /
    • pp.125-131
    • /
    • 1997
  • 대부분의 동적계는 기진력 및 계 인자들에 있어서 다양한 불확정 특성을 갖고 있다. 본 연구에서는 기진력의 불확정성과 계 인자들의 불확정성을 모두 갖는 선형 동적계에 대한 응답해석 과정을 제안하였다. 확률특성을 갖는 계 인자와 응답은 섭동법에 의해 모델링되었으며, 응답해석은 불규칙 진동 이론에 의하여 정식화 되었다. 또한 제안된 응답 모델에 의해 계산되기 어려운 응답의 평균에 대한 해석은 확률유한요소법을 사용하였다. 적용 예로서 정상 백색잡음 기진력을 받으며 불확정 질량과 스프링 상수를 갖는 1자유도계 문제에 대하여 과도응답을 계산하고, 그 결과를 수치 시뮬레이션 결과와 비교하여 그 타당성을 검토하였다.

  • PDF

근접장 광학계의 광학적 및 기계적 특성 분석과 근접장 간격제어 (Optical and Mechanical Characteristics of NF System and NF Gap Control)

  • 오형렬;이준희;권대갑;김수경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1528-1532
    • /
    • 2000
  • The conventional optics and near field optics are compared numerically in the view points of the spot size and propagation characteristics. The decaying characteristics of near field light require the optics to access the object within several tens of nanometers. Therefore the gap control is one of the main issues in the near field optics area. In this paper the gap control is done by using the shear force of the NF(Near Field) probe and the characteristics are examined. The probe is modeled as a 2'nd order mass-spring-damper system driven by a harmonic force. The primary cause of the decrease in vibration amplitude is due to the damping force - shear force - between the surface and the probe. Using the model, damping constant and resonance frequency of the probe is calculated as a function of probe-sample distance. Detecting the amplitude and phase shift of the NF probe attached to the high Q-factor piezoelectric tuning fork, we can control the position of the NF probe about 0 to 50nm above the sample. The feedback signal to regulate the probe-sample distance can be used independently for surface topography imaging. 3-D view of the shear force image of a testing sample with the period of $1{\mu}m$ will be shown.

  • PDF

Dynamic Simulation of Modifiable Bipedal Walking on Uneven Terrain with Unknown Height

  • Hong, Young-Dae;Lee, Ki-Baek
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.733-740
    • /
    • 2016
  • To achieve bipedal walking in real human environments, a bipedal robot should be capable of modifiable walking both on uneven terrain with different heights and on flat terrain. In this paper, a novel walking pattern generator based on a 3-D linear inverted pendulum model (LIPM) is proposed to achieve this objective. By adopting a zero moment point (ZMP) variation scheme in real time, it is possible to change the center-of-mass (COM) position and the velocity of the 3-D LIPM throughout the single support phase. Consequently, the proposed method offers the ability to generate a modifiable pattern for walking on uneven terrain without the necessity for any extra footsteps to adjust the COM motion. In addition, a control strategy for bipedal walking on uneven terrain with unknown height is developed. The torques and ground reaction force are measured through force-sensing resisters (FSRs) on each foot and the foot of the robot is modeled as three virtual spring-damper models for the disturbance compensation. The methods for generating the foot and vertical COM of 3-D LIPM trajectories are proposed to achieve modifiable bipedal walking on uneven terrain without any information regarding the height of the terrain. The effectiveness of the proposed method is confirmed through dynamic simulations.

Calculating and Measuring the Sinking Performance of Small-scale Purse Seine Gear in Java, Indonesia, to Improve the Gear

  • Widagdo, Aris;Lee, Chun-Woo;Lee, Jihoon
    • Fisheries and Aquatic Sciences
    • /
    • 제18권2호
    • /
    • pp.221-227
    • /
    • 2015
  • We analyzed the small-scale purse-seine gear that is used along the North Coast of Java, Indonesia, using computer-aided tools to modify the gear. Data from the middle position of the leadline showed that the maximum depth reached by the net was 30 m. A similar result was also calculated. According to the calculated result, the mean sinking speed of the current gear at the middle position of the leadline was 0.13 m/s, and the maximum tension during pursing was 1,794 kgf. The best sinking performance was found in modified gear that used a 30.3 mm mesh knotless polyester net. The maximum depth reached by the net was 38 m, and mean sinking speed was 0.16 m/s at the middle position of the leadline. The maximum tension during pursing was 1,044 kgf. Independent sample t-test results show that the mean sinking depth and sinking speed in the simulated and measured results did not differ (P > 0.05). These results are expected to improve the efficiency and selectivity of small-scale purse seine gear.

유공압 착륙장치 낙하시험 (Drop Test of an Oleo-pneumatic Landing Gear)

  • 김태욱;이상욱;신정우;이승규;김성찬;황인희;강신현
    • 한국항공우주학회지
    • /
    • 제38권11호
    • /
    • pp.1130-1135
    • /
    • 2010
  • 착륙장치는 완충장치를 이용하여 항공기 착륙 시의 충격을 흡수하는 역할을 한다. 다양한 종류의 완충장치가 존재하나, 완충효율 측면에서 가장 우수한 것은 유공압 방식이다. 착륙장치의 완충 성능은 반드시 낙하시험을 통해 입증하여야 하며, 이는 미 군사규격, 미연방 항공규정 등에서 공통적으로 요구하는 있는 사항이다. 이 논문에서는 낙하시험을 위한 설비 구성, 시험 절차 및 결과분석 방법을 실제 낙하시험 사례와 함께 제시한다.

고체-유체의 상호작용을 고려한 왕복동 압축기의 성능예측 (Prediction of the performance of a reciprocating compressor taking fluid-solid interaction into account)

  • 고재철;주재만;박철희
    • 설비공학논문집
    • /
    • 제9권1호
    • /
    • pp.33-42
    • /
    • 1997
  • The reciprocating compressors are widely used in industrial fields for its simplicity in principle and high efficiency. But the design of it requires rigorous experiments due to its high dependence on many design parameters. In this work, a mathematical model is developed so that we can analyze the gas-solid interaction during the whole working processes of a reciprocating compressor. The governing equations, which represent the fluid-solid interaction, was derived from the unsteady Bernoulli's equation with the assumption of quasi-steady working process. The valve itself was assumed to be a one degree of freedom spring-mass-damper system. A simple thermodynamic relation, the ideal gas state equation, was used to give it an external force term assuming that the refrigerant behaves like an ideal gas. It was suggested to use a motor of higher driving frequency to enhance the performance of the reciprocating compressor without causing a faster failure of the valve.

  • PDF

주파수 응답함수의 피크와 제로를 이용한 구조물의 손상탐지 (Damage Detection of Structures using Peak and Zero of Frequency Response Functions)

  • 박수용
    • 한국지진공학회논문집
    • /
    • 제11권2호
    • /
    • pp.69-79
    • /
    • 2007
  • 본 논문에서는 주파수 응답함수에서의 고유진동수를 나타내는 피크와 추가적 정보를 제공하는 제로를 이용하여 구조물의 손상탐지와 손상도를 추정할 수 있는 기법을 개발하였다. 주파수 응답함수의 이론적 고찰을 통하여 주파수 응답함수 내의 피크와 제로를 정의하고, 강성 및 질량행렬, 주파수 응답행렬의 상관관계로부터 고유치 해석을 통하여 피크와 제로를 구하는 방법을 상세히 설명하였다. 부재 강성의 고유치(피크 및 제로)에 대한 민감도 분석을 이용한 구조계 추정기법의 이론을 정립하였다. 본 연구에서 제안한 기법은 고유 진동수 및 제로진동수를 이용하여 구조부재의 강성을 역으로 추정하여 실제 구조물과 가장 근접한 수치해석 모델을 만드는 것으로 이 과정에서 손상의 위치와 손상도를 추정할 수 있다. 제안한 이론의 정확성과 타당성은 스프링-매스 시스템과 보구조물의 수치해석 모델에 적용하여 입증하였다.

Simultaneous out-of-plane and in-plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers

  • Zuo, Haoran;Bi, Kaiming;Hao, Hong
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.435-449
    • /
    • 2020
  • To effectively extract the vast wind resource, offshore wind turbines are designed with large rotor and slender tower, which makes them vulnerable to external vibration sources such as wind and wave loads. Substantial research efforts have been devoted to mitigate the unwanted vibrations of offshore wind turbines to ensure their serviceability and safety in the normal working condition. However, most previous studies investigated the vibration control of wind turbines in one direction only, i.e., either the out-of-plane or in-plane direction. In reality, wind turbines inevitably vibrate in both directions when they are subjected to the external excitations. The studies on both the in-plane and out-of-plane vibration control of wind turbines are, however, scarce. In the present study, the NREL 5 MW wind turbine is taken as an example, a detailed three-dimensional (3D) Finite Element (FE) model of the wind turbine is developed in ABAQUS. To simultaneously control the in-plane and out-of-plane vibrations induced by the combined wind and wave loads, another carefully designed (i.e., tuned) spring and dashpot are added to the perpendicular direction of each Tuned Mass Damper (TMD) system that is used to control the vibrations of the tower and blades in one particular direction. With this simple modification, a bi-directional TMD system is formed and the vibrations in both the out-of-plane and in-plane directions are simultaneously suppressed. To examine the control effectiveness, the responses of the wind turbine without control, with separate TMD system and the proposed bi-directional TMD system are calculated and compared. Numerical results show that the bi-directional TMD system can simultaneously control the out-of-plane and in-plane vibrations of the wind turbine without changing too much of the conventional design of the control system. The bi-directional control system therefore could be a cost-effective solution to mitigate the bi-directional vibrations of offshore wind turbines.

Free vibration analysis of combined system with variable cross section in tall buildings

  • Jahanshahia, Mohammad Reza;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • 제42권5호
    • /
    • pp.715-728
    • /
    • 2012
  • This paper deals with determining the fundamental frequency of tall buildings that consist of framed tube, shear core, belt truss and outrigger systems in which the framed tube and shear core vary in size along the height of the structure. The effect of belt truss and outrigger system is modeled as a concentrated rotational linear spring at the belt truss and outrigger system location. Many cantilevered tall structures can be treated as cantilevered beams with variable cross-section in free vibration analysis. In this paper, the continuous approach, in which a tall building is replaced by an idealized cantilever continuum representing the structural characteristics, is employed and by using energy method and Hamilton's variational principle, the governing equation for free vibration of tall building with variable distributed mass and stiffness is obtained. The general solution of governing equation is obtained by making appropriate selection for mass and stiffness distribution functions. By applying the separation of variables method for time and space, the governing partial differential equation of motion is reduced to an ordinary differential equation with variable coefficients with the assumption that the transverse displacement is harmonic. A power-series solution representing the mode shape function of tall building is used. Applying boundary conditions yields the boundary value problem; the frequency equation is established and solved through a numerical process to determine the natural frequencies. Computer program has been developed in Matlab (R2009b, Version 7.9.0.529, Mathworks Inc., California, USA). A numerical example has been solved to demonstrate the reliability of this method. The results of the proposed mathematical model give a good understanding of the structure's dynamic characteristics; it is easy to use, yet reasonably accurate and suitable for quick evaluations during the preliminary design stages.

화력과 기동의 통합성능을 고려한 미래 전투차량의 해석 기반 설계 프레임웍 연구: (2) 통합최적설계 (Model-Driven Design Framework for Future Combat Vehicle Development based on Firepower and Mobility: (2) Integrated Design Optimization)

  • 임우철;임성훈;김신유;민승재;이태희;류재봉;변재정
    • 한국CDE학회논문집
    • /
    • 제19권4호
    • /
    • pp.324-331
    • /
    • 2014
  • In the design of a combat vehicle, various performances such as firepower, mobility and survivability, etc., should be considered. Furthermore, since these performances relate to each other, design framework which can treat an integrated system should be employed to design the combat vehicle. In this paper, we use empirical interior ballistic and 3D combat vehicle analyses for predicting firepower and mobility performances which are developed in previous study (1) integrated performance modeling. In firepower performance, pitch and roll angle by sequential firing are considered. In mobility performance, vertical acceleration after passing through a bump is regarded. However, since there are many design variables such as mass of vehicle, mass of suspension, spring and damping coefficient of suspension and tire, geometric variables of vehicle, etc., for firepower and mobility performance, we utilize analysis of variance and quality function deployment to reduce the number of design variables. Finally, integrated design optimization is carried out for integrated performance such as firepower and mobility.