• Title/Summary/Keyword: Mass-spring model

Search Result 322, Processing Time 0.027 seconds

Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads

  • Zhou, Xuanyi;Lin, Yongjian;Gu, Ming
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.363-388
    • /
    • 2015
  • For controlling the vibration of specific building structure with large span, a practical method for the design of MTMD was developed according to the characteristics of structures subjected to wind loads. Based on the model of analyzing wind-induced response of large-span structure with MTMD, the optimization method of multiple tuned mass dampers for large-span roof structures subjected to wind loads was established, in which the applicable requirements for strength and fatigue life of TMD spring were considered. According to the method, the controlled modes and placements of TMDs in MTMD were determined through the quantitative analysis on modal contribution to the wind-induced dynamic response of structure. To explore the characteristics of MTMD, the parametric analysis on the effects of mass ratio, damping ratio, central tuning frequency ratio and frequency range of MTMD, was performed in the study. Then the parameters of MTMD were optimized through genetic algorithm and the optimized MTMD showed good dynamic characteristics. The robustness of the optimized MTMD was also investigated.

Exact vibration of Timoshenko beam combined with multiple mass spring sub-systems

  • El-Sayed, Tamer A.;Farghaly, Said H.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.989-1014
    • /
    • 2016
  • This paper deals with the analysis of the natural frequencies, mode shapes of an axially loaded beam system carrying ends consisting of non-concentrated tip masses and three spring-two mass sub-systems. The influence of system design and sub-system parameters on the combined system characteristics is the major part of this investigation. The effect of material properties, rotary inertia and shear deformation of the beam system is included. The end masses are elastically supported against rotation and translation at an offset point from the point of attachment. Sub-systems are attached to center of gravity eccentric points out of the beam span. The boundary conditions of the ordinary differential equation governing the lateral deflections and slope due to bending of the beam system including developed shear force frequency dependent terms, due to the sub.system suspension, have been formulated. Exact formulae for the modal frequencies and the modal shapes have been derived. Based on these formulae, detailed parametric studies are carried out. The geometrical and mechanical parameters of the system under study have been presented in non-dimensional analysis. The applied mathematical model is presented to cover wide range of mechanical, naval and structural engineering applications.

Measurement dynamic properties of railways and health monitoring (철도 궤도의 동특성 측정 및 건전도 모니터링)

  • Lee, Je-Pil;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.816-816
    • /
    • 2009
  • In order to attenuate structural waves in railway track, damped mass-spring absorber system and spring supported system are considered that are attached continuously along the beam length. A mathematical model is presented for the propagation of structural waves on a finitely long, periodically supported classical beam. The model in this paper could represent a railway track where the beam represents the rail and an appropriately chosen support type represents the pad/sleeper/ballast system of a railway track. And in this study, it is presented that the measurement method of health monitoring of railway track.

  • PDF

Analysis of Novel Magnetic-Spring Actuators for Portable Units (휴대장치용 새로운 자기 스프링 액추에이터의 해석)

  • 한인환
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1942-1949
    • /
    • 2004
  • SLA(Scanned Linear Array) is a portable display unit for implementing next-generation virtual realities, utilizes a design that light generated by a line of LEDs is reflected from the rapidly oscillating mirror to generate a raster display. Reaction forces generated by the motions of the mirror and counter-balance mass cancel each other at the device base, reducing vibration. Metal leaf springs have been extensively applied in such portable units. Magnetic springs have been developed and adopted that can replace the metal spring and can avoid many disadvantages of metal springs. We model and analyze the dynamics of the structure with magnetic springs and present the simulation and experimental analysis results, which can be utilized for identifying and eliminating possible problem sources in removing shaking forces and moments, and oscillating the mirror at the required amplitude and frequency. Finally, we present the improved novel magnetic actuator model which can be applied in portable display units.

Wafer Motion Control of Clean Tube System (클린튜브 시스템의 웨이퍼 운동 제어)

  • 신동헌;최철환;정규식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.475-481
    • /
    • 2004
  • This paper presents a force model of the clean tube system, which was developed as a means of transferring air-floated wafers inside a closed tube filled with super clean air. The recovering force from the holes for floating wafers is modeled as a linear spring and thus the wafers motion is modeled as a mass-spring-damper system. The propelling forces are modeled as linear along with the wafer location. The paper also proposes a control method to emit and stop a wafer at the center of a control unit. It reveals the minimum value of the propelling force to leave from the control unit. In order to stop the wafer, it utilizes the exact time when the wafer arrives at the position to activate the propelling force. Experiments with the clean tube system built for the 12 inch wafer shows the validity of the proposed model and the algorithm.

Wafer Motion Control of a Clean Tube System (클린튜브 시스템의 웨이퍼 정지 제어)

  • 신동헌;최철환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.459-462
    • /
    • 2003
  • This paper presents a force model of the clean tube system, which was developed as a means for transferring the air-floated wafers inside the closed tube filled with the super clean air. The recovering force from the holes for floating wafers is modeled as a linear spring and thus the wafer motion is modeled as a mass-spring-damper system. The propelling forces are modeled as linear along with the wafer location. The paper also proposes the control method to emit and stop a wafer at the center of a control unit. It shows the minimum value of the propelling force to leave from the control unit. In order to stop the wafer, it utilizes the exact time when a wafer arrives at the position to activate the propelling force. Experiments with the clean tube system built for 12 inch wafer shows the validity of the proposed model and the algorithm.

  • PDF

Analysis for Cokes Fracture Behavior using Discrete Element Method (이산요소법을 이용한 코크스 분화 거동 해석)

  • You, Soo-Hyun;Park, Junyoung
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • The strength of lumped cokes can be represented by some index numbers. Although some indexes are suggested, these indexes are not enough to enlighten fracture mechanism. To find essential mechanism, a computational way, discrete element method, is applied to the uniaxial compression test for cylindrical specimen. The cylindrical specimen is a kind of lumped particle mass with parallel bonding that will be broken when the normal stress and shear stress is over a critical value. It is revealed that the primary factors for cokes fracture are parallel spring constant, parallel bond strength, bonding radius and packing ratio the parallel bond strength and radius of the parallel combination the packing density. Especially, parallel spring constant is directly related with elastic constant and yield strength.

Analysis of Camshaft Vibration Characteristics with Mixed Lubrication (혼합 윤활을 고려한 캠 축 진동 특성 해석)

  • 김지운;문태선;한동철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.34-43
    • /
    • 2002
  • This paper focused on the dynamic behavior of camshaft in a direct acting type valve train system. To investigate camshaft behavior, transient vibration analysis is performed by using the transfer matrix method. The camshaft is treated as a lumped mass system supported by spring and damper, From the presented analytical model, we could predict dynamic behavior of camshaft, shaft locus within bearing and bearing load. The presented model and results will be very helpful to design the optimal camshaft and valve train system.

Effects of High Damping Rubber Bearing on Horizontal and Vertical Seismic Responses of a Pressurized Water Reactor

  • Bong Yoo;Lee, Jae-Han;Koo, Gyeong-Hoi
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.1021-1026
    • /
    • 1995
  • The seismic responses of a base isolated Pressurized Water Reactor (PWR) are investigated using a mathematical model which expresses the superstructure as lumped mass-spring model and the seismic isolator as an equivalent spring-damper. Time history analyses are performed for the 1940 E1 Centre earthquakes in both horizontal and vertical directions. In the analysis, structural damping of 5% is used for the superstructure. The isolator damping ratios of 12% for horizontal and 5% for vertical directions are used. The acceleration responses in base isolated PWR superstructure with high damping rubber bearings are much smaller than those in fixed base structure in horizontal direction. However, the vertical acceleration responses at the superstructure in the base isolation system are amplified to some extent. It is suggested that the vertical seismic responses at the superstructure should be reduced by introducing a soft vertical isolation device.

  • PDF

Design and Implementation of a Cloth Simulation System based on Hierarchical Space Subdivision Method (계층적 공간 분할 방법을 이용한 의복 시뮬레이션 시스템의 설계 및 구현)

  • Kim Ju-Ri;Cho Jin-Ei;Joung Suck-Tae;Lee Yong-Ju;Jung Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.4 s.32
    • /
    • pp.109-116
    • /
    • 2004
  • This paper describes a cloth simulation system for dressing 3D virtual human model with different pieces of clothing. The garments are constructed of cutting patterns seamed together. The system reads a body file and a cutting pattern file and produces a new model dressed with the specified garment by using a physical simulation based on a mass-spring model. For the realistic cloth simulation, it performs collision detection and response between triangles of the 3D human model and the garment. Because the number of triangles of a human model is very large. the collision detection and response requires a lot of time. To overcome this problem, we propose a pruning method which decreases the number of collision detection and response by a space-subdivision method. Experimental results show that the system produces realistic images and makes it possible to sew a garment around a virtual human body in several seconds.

  • PDF