• Title/Summary/Keyword: Mass-spring System

Search Result 440, Processing Time 0.032 seconds

Similarity Analysis of Scale Ratio Effects on Pulsating Air Pockets Based on Bagnold's Impact Number (Bagnold 충격수를 고려한 압축 팽창하는 갇힌 공기에 미치는 축척비 효과에 대한 상사 해석)

  • Sangmook Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.193-201
    • /
    • 2023
  • A developed code based on the unified conservation laws of incompressible/compressible fluids is applied to analyze similarity in pressure oscillations caused by pulsating air pockets in sloshing tanks. It is shown that the nondimensional time histories of pressure show good agreements under Froude and geometric similarities, provided that there are no pulsating entrapped air pockets. However, the nondimesional period of pressure oscillation due to the pulsating air pocket becomes longer as the size of the sloshing tank increases. The discrepancy in the nondimensional period is attributed to the compressibility bias of the entrapped air. To get rid of the compressibility bias, the ullage pressure in a sloshing tank is adjusted based on the Bagnold's impact number. The variation in the period of pressure oscillation according to the ullage pressure is explained based on the spring-mass system. It is shown that the nondimensional period of pressure oscillation is virtually constant when the ullage pressure is adjusted based on the Bagnold's impact number, regardless of tank size. It is found that the Bagold's impact number should be the same, if the time history of pressure is important while an entrapped air pocket pulsates.

KMTNET: A NETWORK OF 1.6 M WIDE-FIELD OPTICAL TELESCOPES INSTALLED AT THREE SOUTHERN OBSERVATORIES

  • KIM, SEUNG-LEE;LEE, CHUNG-UK;PARK, BYEONG-GON;KIM, DONG-JIN;CHA, SANG-MOK;LEE, YONGSEOK;HAN, CHEONGHO;CHUN, MOO-YOUNG;YUK, INSOO
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • The Korea Microlensing Telescope Network (KMTNet) is a wide-field photometric system installed by the Korea Astronomy and Space Science Institute (KASI). Here, we present the overall technical specifications of the KMTNet observation system, test observation results, data transfer and image processing procedure, and finally, the KMTNet science programs. The system consists of three 1.6 m wide-field optical telescopes equipped with mosaic CCD cameras of 18k by 18k pixels. Each telescope provides a 2.0 by 2.0 square degree field of view. We have finished installing all three telescopes and cameras sequentially at the Cerro-Tololo Inter-American Observatory (CTIO) in Chile, the South African Astronomical Observatory (SAAO) in South Africa, and the Siding Spring Observatory (SSO) in Australia. This network of telescopes, which is spread over three different continents at a similar latitude of about -30 degrees, enables 24-hour continuous monitoring of targets observable in the Southern Hemisphere. The test observations showed good image quality that meets the seeing requirement of less than 1.0 arcsec in I-band. All of the observation data are transferred to the KMTNet data center at KASI via the international network communication and are processed with the KMTNet data pipeline. The primary scientific goal of the KMTNet is to discover numerous extrasolar planets toward the Galactic bulge by using the gravitational microlensing technique, especially earth-mass planets in the habitable zone. During the non-bulge season, the system is used for wide-field photometric survey science on supernovae, asteroids, and external galaxies.

THE ATTITUDE STABILITY ANALYSIS OF A RIGID BODY WITH MULTI-ELASTIC APPENDAGES AND MULTI-LIQUID-FILLED CAVITIES USING THE CHETAEV METHOD

  • Kuang, Jin-Lu;Kim, Byung-Jin;Lee, Hyun-Woo;Sung, Dan-Keun
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.209-220
    • /
    • 1998
  • The stability problem of steady motion of a rigid body with multi-elastic appendages and multi-liquid-filled cavities, in the presence of no external forces or torque, is considered in this paper. The flexible appendages are modeled as the clamped -free-free-free rectangular plates, or/and as the discrete mass- spring sub-system. The motion of liquid in every single ellipsoidal cavity is modeled as the uniform vortex motion with a finite number of degrees of freedom. Assuming that stationary holonomic constraints imposed on the body allow its rotation about a spatially fixed axis, the equation of motion for such a systematic configuration can be very complex. It consists of a set of ordinary differential equations for the motion of the rigid body, the uniform rotation of the contained liquids, the motion of discrete elastic parts, and a set of partial differential equations for the elastic appendages supplemented by appropriate initial and boundary conditions. In addition, for such a hybrid system, under suitable assumptions, their equations of motion have four types of first integrals, i.e., energy and area, Helmholtz' constancy of liquid - vortexes, and the constant of the Poisson equation of motion. Chetaev's effective method for constructing Liapunov functions in the form of a set of first integrals of the equations of the perturbed motion is employed to investigate the sufficient stability conditions of steady motions of the complete system in the sense of Liapunov, i.e., with respect to the variables determining the motion of the solid body and to some quantities which define integrally the motion of flexible appendages. These sufficient conditions take into account the vortexes of the contained liquids, the vibration of the flexible components, and coupling among the liquid-elasticity solid.

  • PDF

A study on the Optimum Design Configuration of Passive Solar TI-wall system (투명단열재가 적용된 축열벽 시스템의 최적구성 선정에 관한 연구)

  • Kim, Byoung-Soo;Yoon, Jong-Ho;Yoon, Yong-Jin;Baek, Nam-Choon
    • KIEAE Journal
    • /
    • v.3 no.2
    • /
    • pp.37-44
    • /
    • 2003
  • The aim of this study was to analyze the thermal performance through Test-Cell of TI-wall in domestic climate. This study was carried out as follows: 1) The TI-wall was studied for ability to reduce heat loss through the building envelope and analyzed to TIM properties. 2) Test models of TI-wall were designed through the investigation of previous paper and work, measured for winter and spring, and the thermal effects were analyzed. The type of the TIM used in test model is small-celled(diameter 4mm and thickness 50mm) capillary and cement brick(density $1500kg/m^3$) was used by thermal mass. 3) Test-cell of TI-wall was calibrated from measured data and the dynamic simulation program ESP-r 9.0. In these simulations, the measured climate conditions of TaeJon were used as outdoor conditions, and the simulation model of Test-cell was developed. 4) The sensitivity analysis is executed in various aspects with standard weather files and ESP-r 9.0, and then most suitable system of TI-wall are predicted. Finally, The suitable system of TI-wall was analysed according to sizes of air gap, kinds, thickness, and the surface absorption of therm wall. The result is following. In TI-wall, Concrete is better than cement brick, at that time the surface absorption is 95%, and the most efficient thickness is 250mm. As smaller of a air gap, as reducer of convection heat loss, it is efficient for heating energy. However, ensuring of a air gap at least more than 50mm is desirable for natural ventilation in Summer.

Study on the Prediction of Lateral and Yawing Behaviors of a Leading Vehicle in a Train Collision (철도차량 충돌 시 선두차량의 횡 및 요잉 거동 예측 연구)

  • Kim, Jun Woo;Jeong, Eui Cheol;Koo, Jeong Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.95-101
    • /
    • 2017
  • In this study, we derived theoretical equations for the zigzag movement of a leading vehicle, which is the most frequent behavior in train accidents, by using a simplified spring-mass model for the rolling stock. In order to solve the equations of motion, we applied the Runge-Kutta method, which is the typical numerical analysis method used for differential equations. Furthermore, the lateral displacement of the wheel-set at the wheel-rail interface was estimated using kinetic energy. In order to verify the derived equations, we compared the theoretical and simulated results under various collision conditions. The maximum relative deviations of the lateral displacements were 0.8 [%] ~ 4.7 [%] in light collisions and 0.6 [%] ~ 5.1 [%] under derailment conditions. When an accident is simulated, these theoretical equations can be used to predict the overall behavior and obtain the offset of the body-to-body link as the initial perturbation.

Analysis of Bicycle Cushion System by using Repulsive Force of Magnetics (영구자석의 척력을 이용한 자전거 완충장치 해석)

  • Yun, Seong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • One commercial package for magnetic analysis was used to apply repulsive forces of permanent magnetics to bicycle cushion system. Reliabilities of finite element analysis were acquired by comparing with those of experimental measurements. Equivalent spring stiffnesses corresponding to various sizes of magnetics were implemented into the bicycle dynamic model with three degree of freedom. Input force caused at front and rear wheels due to road unevenness was considered in the dynamic model. Dynamic behaviors were observed in terms of vertical displacements of the rider and the front reach as well as pitching displacement of the mass center when the bicycle ran over half-triangular bump. The methodology suggested in this paper by the finite element analysis and numerical model will be an useful tool for more accurate prediction of cushion design for any vehicle system if magnetic forces are utilized.

A NOVEL SPIRAL TYPE MEMS POWER GENERATOR WITH SHEAR MODE

  • Song, Hyun-Cheol;Kang, Chong-Yun;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.7-7
    • /
    • 2010
  • Energy harvesting from the environment has been of great interest as a standalone power source of wireless sensor nodes for Ubiquitous Sensor Networks(USN). In particular, the piezoelectric energy harvesting from ambient vibration sources has intensively researched because it has a relatively high power density comparing with other energy scavenging methods. Through recent advances in low power consumption RF transmitters and sensors, it is possible to adopt a micro-power energy harvesting system realized by MEMS technology for the system-on-chip. However, the MEMS energy harvesting system has some drawbacks such as a high natural frequency over 300 Hz and a small power generation due to a small dimension. To overcome these limitations, we devised a novel power generator with a spiral spring structure as shown in the figure. The natural frequency of a cantilever could be decreased to the usable frequency region (under 300 Hz) because the natural frequency depends on the length of a cantilever. In this study, the natural frequency of the energy harvester was a lower than a normal cantilever structure and sufficiently controllable in 50 - 200 Hz frequency region as adjusting weight of a proof mass. Moreover, the MEMS energy harvester had a high energy conversion efficiency using a shear mode ($d_{15}$) is much larger than a 33 mode ($d_{33}$) and the energy conversion efficiency is proportional to the piezoelectric constant (d). We expect the spiral type MEMS power generator would be a good candidate for a standalone power generator for USN.

  • PDF

Development of a User-friendly Continuous-system Simulation Language (사용자 편의성을 고려한 연속체계 모의실험 언어의 개발)

  • 민경하;임창관;박찬모
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1993.10a
    • /
    • pp.12-13
    • /
    • 1993
  • 컴퓨터를 이용한 모의 실험 방법은 과학 및 공학 분야뿐만 아니라 경제,사회 현상등에도 널리 적용될 수 있는 유용한 도구이다. 그 중에서도 연속체계 모의 실험은 미분 방정식으로 모델링되는 시스템을 대상으로 하는 경우가 맡으며, 이를 위하여 그동안 맡은 연속체계 모의 실험 언어들이 개발되었다. 그러나 그들은 대부분 사용하기가 복잡하여 사용자 편의성을 고려한 모의 실험 언어에 대한 필요성이 증대되었다. 본 연구에서는 사용자에개 최대한 편의성을 제공하는 연속체계 모의 실험 언어인 PCSL (Postech Continuous-system Simulation language)을 개발하였다. PCSL 프로그램은 프로그램 헤더, 상수 정의부, 함수 정의부, 매개 변수 정의부, 초기화 선언부, 모델 정의부, 종료 조건 선언부, 출력 선언부 등으로 나누어 진다. 그리고 출력으로는 계산 결과를 파일에 저장, 흑은 수치로 인쇄하거나 그래프로 그려서 보여준다. PCSL 처리 시스템은 모델 정의부에서 주어진 미분방정식을 해석해서 digital-analog simulation 기법으로 풀 수 있는 형태로 변환하는 번역기와 이렇게 변환된 형태의 미분방정식과 여러 가지 조건들을 고려해서 C 프로그램을 생성해주는 생성기, 생성된 C 프로그램을 실행시켜서 그 결과를 얻는 실행기,그리고 사용자에게 편리한 입출력 방법을 제공하는 사용자 인터페이스로 구성된다. 번역기에서는 모델로 주어진 미분방정식의 종류를 결정한 후에 이들을 digital-analog simulation 기법으로 풀 수 있는 형태로 변환한다. 생성기에서는 번역기의 결과를 받고,프로그램 상의 여러 가지 조건들을 고려해서 C 프로그램을 생성한다. 여기서 생성된 C프로그램은 미분방정식을 포함하는 ‘f.c'와 조건들을 포함하는'main.h', 그리고 digital-analog simulation 기법을 이용하는 모의 실험 알고리즘을 구현한 'main.c'로 구성된다. 그리고 실행기에서는 생성기에서 생성한 C 프로그램을 실행시켜서 결과를 얻는다. 여기에서 필요로 하는 PCSL 프로그램의 내응은 종료 조건 선언부, 출력 선언부 등이다. 마지막으로 사용자 인터페이스는 사용자가 간편하게 PCSL 프로그램을 입력할 수 있게 도와주며 모의 실험 결과를 쉽게 화면상에 보여주기 위한 것이다. 이 때에 사용자가 원하면 계산 결과를 그래프로 그려서 보여주는 기능과 화면에 보이는 결과를 프린터로 출력할 수 있는 기능을 제공한다. 실형 결과로는 먼저 선형 상미분방정식의 예로 mass-damper-spring system, 비선형 상미분방정식의 예로는 van der Pol 방정식, 연립 상미분방정식의 예로는 mixing tank problem 등을 보였으며, 그의 공학에서 일어나는 여러 가지 문제들도 다루었다.

  • PDF

The Cross-sectional Mass Flux Observation at Yeomha Channel, Gyeonggi Bay at Spring Tide During Dry and Flood Season (단면 관측을 통한 경기만 염하수로의 대조기 평수시와 홍수시 유출입량 변화특성 조사)

  • Lee, Dong-Hwan;Yoon, Byung-Il;Kim, Jong-Wook;Gu, Bon-Ho;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.16-25
    • /
    • 2012
  • To calculate the total mass flux that change in dry and flood season in the Yeomha Channel of Gyeonggi Bay, the 13 hour bottom tracking observation was performed from the southern extremity. The value of the total mass flux(Lagrange flux) was calculated as the sum of the Eulerian flux value and stroke drift value and the tidal residual flow was harmonically analyzed through the least-squares method. Moreover, the average during the tidal cycle is essential to calculate the mass flux and the tidal residual flow and there is the need to equate the grid of repeatedly observed data. Nevertheless, due to the great differences in the studied region, the number of vertical grid tends to change according to time and since the horizontal grid differs according to the transport speed of the ship as a characteristic of the bottom tracking observation, differences occur in the horizontal and vertical grid for each hour. Hence, the present study has vertically and horizontally normalized(sigma coordinate) to equate the grid per each hour. When compared to the z-level coordinate system, the Sigma coordinate system was evaluated to have no irrationalities in data analysis with 5% of error. As a result of the analysis, the tidal residual flow displayed the flow pattern of sagging in the both ends in the main waterway direction of dry season. During flood season, it was confirmed that the tidal residual flow was vertical 2-layer flow. As a result of the total mass flux, the ebb properties of 359 cm/s and 261 cm/s were observed during dry and flood season, respectively. The total mass flux was moving the intertidal region between Youngjong-do and Ganghwa-do.

Analysis of PM2.5 Case Study Burden at Chungju City (충주시 미세입자 (PM2.5) 농도특성에 대한 사례 연구)

  • Lee, Sung-Hee;Kang, Byung-Wook;Yeon, Ik-Jun;Choi, Jun-Rack;Park, Hyun-Pill;Park, Sang-Chan;Lee, Hak Sung;Cho, Byung-Yeol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.595-605
    • /
    • 2012
  • Fine particles ($PM_{2.5}$) were collected and analyzed from April 2010 through January 2011 in Chungju to investigate the characteristics of $PM_{2.5}$ and its ionic species. The annual mean concentrations of $PM_{2.5}$, ${SO_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ in the particulate phase were 40.84, 7.61, 7.14 and $3.74{\mu}g/m^3$, respectively. $PM_{2.5}$ concentrations were higher in fall and spring than in winter and summer. The elevated concentrations episodes are the main factor that enhanced the $PM_{2.5}$ concentrations in the fall. Among the major ionic species ${SO_4}^{2-}$ showed the highest concentration, followed by $NO_3{^-}$ and $NH_4{^+}$, $NO_3^-$ exhibited higher concentrations during the winter, but ${SO_4}^{2-}$ and $NH_4{^+}$ were not showed seasonal variation. The high correlations were found among $PM_{2.5}$, ${SO_4}^{2-}$, $NO_3{^-}$ and $NH_4{^+}$ during all seasons except for spring. The evaluation of backward trajectories and meteorological records show that the highest $PM_{2.5}$ concentration levels occurred during W-NW weather conditions, which influenced by the emission sources of China area. The low pollution levels generally occurred during E-S weather conditions, which influenced by the East Sea and south of the Yellow Sea. The elevated $PM_{2.5}$ mass concentrations arouse the concentration of $NO_3{^-}$, but no effects on ${SO_4}^{2-}$ and $NH_4{^+}$.