• Title/Summary/Keyword: Mass-spring System

Search Result 440, Processing Time 0.026 seconds

Use of equivalent spring method for free vibration analyses of a rectangular plate carrying multiple three-degree-of-freedom spring-mass systems

  • Wu, Jia-Jang
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.713-735
    • /
    • 2005
  • Due to the complexity of mathematical expressions, the literature concerning the free vibration analysis of plates carrying multiple three-degree-of-freedom (dof) spring-mass systems is rare. In this paper, the three degrees of freedom (dof's) for a spring-mass system refer to the translational motion of its lumped mass in the vertical ($\bar{z}$) direction and the two pitching motions of its lumped mass about the two horizontal ($\bar{x}$ and $\bar{y}$) axes. The basic concept of this paper is to replace each three-dof spring-mass system by a set of equivalent springs, so that the free vibration characteristics of a rectangular plate carrying any number of three-dof spring-mass systems can be obtained from those of the same plate supported by the same number of sets of equivalent springs. Since the three dof's of the lumped mass for each three-dof spring-mass system are eliminated to yield a set of equivalent springs, the total dof of the entire vibrating system is not affected by the total number of the spring-mass systems attached to the rectangular plate. However, this is not true in the conventional finite element method (FEM), where the total dof of the entire vibrating system increases three if one more three-dof spring-mass system is attached to the rectangular plate. Hence, the computer storage memory required by using the presented equivalent spring method (ESM) is less than that required by the conventional FEM, and the more the total number of the three-dof spring-mass systems attached to the plate, the more the advantage of the ESM. In addition, since manufacturing a spring with the specified stiffness is much easier than making a three-dof spring-mass system with the specified spring constants and mass magnitude, the presented theory of replacing a three-dof spring-mass system by a set of equivalent springs will be also significant from this viewpoint.

Influence of Two Successively-moving Spring-mass Systems with Initial Displacement on Dynamic Behavior of a Simply-supported Beam Subjected to Uniformly Distributed Follower Forces (초기 변위를 가지고 연속 이동하는 스프링-질량계가 등분포종동력을 받는 단순지지보의 동특성에 미치는 영향)

  • 윤한익;강혁준;유진석
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.202-209
    • /
    • 2003
  • A simply supported beam subjected to a uniformly distributed tangential follower force and the two successively moving spring-mass systems upon it constitute this vibration system. The influences of the velocities of the moving spring-mass system, the distance between two successively moving spring-mass systems and the uniformly distributed tangential follower force have been studied on the dynamic behavior of a simply supported beam by numerical method. The uniformly distributed tangential follower force is considered within its critical value of a simply supported beam without two successively moving spring-mass systems, and three kinds of constant velocities and constant initial displacement of two successively moving spring-mass systems are also chosen. Their coupling effects on the transverse vibration of the simply supported beam are inspected too. In this study the simply supported beam is deflected with small vibration proportional to natural frequency of the moving spring-mass systems. According to the increasing of initial displacement of the moving spring-mass systems the amplitude of the small vibration of the simply supported beam is increased due to the spring force. The velocity of the moving spring-mass system more affect on the transverse deflection of simply supported beam than other factors of the system and the effect is dominant at high velocity of the moving spring-mass systems.

Equivalent Impedance Modelling and Frequency Characteristic Analysis of Linear Oscillatory Actuator System Considering Mass/spring System (질량/스프링 계를 고려한 리니어 왕복 액추에이터 시스템의 등가 임피던스 모델링과 주파수 특성 해석)

  • Jeong, Sang-Seop;Jang, Seok-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.370-378
    • /
    • 2002
  • As resent trends in structural construction have been to build taller and larger structures than any time in the past, they have had high flexibility and low damping that can cause large vibration response under severe environmental loading such as earthquakes, winds, and mechanical excitations. The damper with mass and spring is one approach to safeguarding the structure against excessive vibrations. In this paper, the lumped electrical circuit approach of mass/spring system is used to model the mechanical aspects according to the frequency. Therefore, the mass/spring system can be dealt with here and linked with the equivalent circuit of electric linear oscillatory actuator(LOA). Analysis models are two types of vibration control system, active mass damper(AMD) and hybrid mass damper(HMD). AMD consists of the moving coil LOA with mass only The LOA of HMD with mass and spring is composed of the fixed coil and the movable permanent magnet(PM) field part. The PM field part composed magnet modules and iron coke, is the damper marts itself. We Present the motional resistance and reactance of mass/spring system and the system impedance of AMD and HMD according to the frequency.

On the consideration of the masses of helical springs in damped combined systems consisting of two continua

  • Gurgoze, M.;Zeren, S.;Bicak, M.M.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.167-188
    • /
    • 2008
  • This study is concerned with the establishment of the characteristic equation of a combined system consisting of a cantilever beam with a tip mass and an in-span visco-elastic helical spring-mass, considering the mass of the helical spring. After obtaining the "exact" characteristic equation of the combined system, by making use of a boundary value problem formulation, the characteristic equation is established via a transfer matrix method, as well. Further, the characteristic equation of a reduced system is obtained as a special case. Then, the characteristic equations are numerically solved for various combinations of the physical parameters. Further, comparison of the results with the massless spring case and the case in which the spring mass is partially considered, reveals the fact that neglecting or considering the mass of the spring partially can cause considerable errors for some combinations of the physical parameters of the system.

A Study on the Effect of First-order Hold Method on the Stability Boundary of a Virtual Mass-spring Model (일차-홀드 방법이 가상 질량-스프링 모델의 안정성 영역에 미치는 영향에 대한 연구)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.10 no.1
    • /
    • pp.41-45
    • /
    • 2020
  • This paper presents the effects of a virtual mass on the stability boundary of a virtual spring in the haptic system with first-order-hold. The virtual rigid body is modeled as a virtual spring and a virtual mass. When first-order-hold is applied, we analyze the stability boundary of the virtual spring through the simulation according to the virtual mass and the sampling time. As the virtual mass increases, the stability boundary of the virtual spring gradually increases and then decreases after reaching the maximum value. The results are compared with the stability boundary in the haptic system with zero-order-hold. When a virtual mass is small, the stability boundary of a virtual spring in the system with first-order-hold is larger than that in the system with zero-order-hold.

Free vibration analysis of a uniform beam carrying multiple spring-mass systems with masses of the springs considered

  • Wu, Jia-Jang
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.659-676
    • /
    • 2008
  • The reports regarding the free vibration analysis of uniform beams carrying single or multiple spring-mass systems are plenty, however, among which, those with inertia effect of the helical spring(s) considered are limited. In this paper, by taking the mass of the helical spring into consideration, the stiffness and mass matrices of a spring-mass system and an equivalent mass that may be used to replace the effect of a spring-mass system are derived. By means of the last element stiffness and mass matrices, the natural frequencies and mode shapes for a uniform cantilever beam carrying any number of springmass systems (or loaded beam) are determined using the conventional finite element method (FEM). Similarly, by means of the last equivalent mass, the natural frequencies and mode shapes of the same loaded beam are also determined using the presented equivalent mass method (EMM), where the cantilever beam elastically mounted by a number of lumped masses is replaced by the same beam rigidly attached by the same number of equivalent masses. Good agreement between the numerical results of FEM and those of EMM and/or those of the existing literature confirms the reliability of the presented approaches.

Influence of Successive Two Moving Spring-Mass Systems on Dynamic Behavior of a Simple Beam Subjected to Uniformly Distributed Follower Forces (연속이동 스프링-질량계가 등분포종동력을 받는 단순보의 동특성에 미치는 영향)

  • 유진석;윤한익;강혁준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.82-88
    • /
    • 2002
  • A simple beam subjected to a uniformly distributed tangential follower force and the successive two moving spring-mass systems upon it constitute this vibration system. The influences of the velocities of the moving spring-mass system, the distance between the successive two moving spring-mass systems and the uniformly distributed tangential follower force have been studied on the dynamic behavior of a simple beam by numerical method. The uniformly distributed tangential follower force is considered within its critical value of a simple beam without the successive two moving spring-mass systems, and three kinds of constant velocities and constant distance of the successive two moving spring-mass systems are also chosen. Their coupling effects on the transverse vibration of the simple beam are inspected too.

  • PDF

A study on the stability boundary of a virtual spring model with a virtual mass (가상스프링 모델의 안정성 영역에 대한 가상질량의 영향에 대한 연구)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.15-20
    • /
    • 2016
  • This paper presents the effects of a virtual mass on the stability boundary of a virtual spring in the haptic system. A haptic system consists of a haptic device, a sampler, a virtual rigid body and zero-order-hold. The virtual rigid body is modeled as a virtual spring and a virtual mass. According to the virtual mass and the sampling time, the stability boundary of the virtual spring is analyzed through the simulation. As the virtual mass increases, the value of the virtual spring to guarantee the stability gradually increases and then decreases after reaching the maximum value. These simulation results show that the addition of the virtual mass enables to expand the stability boundary of the virtual spring.

On mode localization of a weakly coupled beam system with spring-mass attachments

  • Huang, M.;Liu, J.K.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.13-24
    • /
    • 2012
  • There are a large number of papers in the literature dealing with the free vibration analysis of single/multi-span uniform beam with multiple spring-mass systems, but that of coupled multi-span beams carrying spring-mass attachments is rare. In this note, free vibration analysis of a weakly coupled beam system with spring-mass attachments is conducted. The mode localization and frequency loci veering phenomena of the coupled beam system are investigated. Studies show that for weakly coupled beam system with spring-mass attachments, the mode localization and frequency loci veering will occur once there is a disorder in the system.

A Coupled Vibration Analysis of Railway Track System with Consideration of Contact Stiffness (접촉강성을 고려한 차량-레일계의 연성진동해석)

  • 류윤선;조희복;김사수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.241-246
    • /
    • 1997
  • Corrugation of railway track can be caused by the various dynamic behaviors of traveling wheels and track. In this paper, the coupled vibrations of traveling wheel and railway track are analyzed as the cause of corrugations. To analyze the coupled vibration, the track supported by the sleepers and the traveling wheels are identified to the elastically supported infinite beam and the spring-mass system which runs at constant speed. The Hertzian contact spring is considered between the infinite beam and spring-mass system. The dynamic responses of elastically supported infinite beam and spring-mass system are calculated. The cause and development of rail corrugation are discussed in the view point of contact force fluctuation affected by the elastic supports and the corrugated surface profile on the track. By the obtained results, the possibilities of resonance are checked between the excitation by the corrugated surface profile and the natural frequency of contact spring-mass system. It may be thought to a development of railway corrugation.

  • PDF