• Title/Summary/Keyword: Mass-loading effect

Search Result 135, Processing Time 0.02 seconds

Natural Frequency Analysis of Cantilever Plates with Added Mass (부가수 질량을 고려한 외팔판의 고유진동 해석)

  • Jang, Hyun-Gil;Nho, In Sik;Hong, Chang-Ho;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The high-skewed and/or composite propellers of current interests to reduce the ship vibration and to increase the acoustic performance are likely to be exposed to the unexpected structural problems. One typical example is that the added mass effect on the propellers working in the non-uniform wake field reduces the natural frequency of the propeller leading to the resonance with the low-frequency excitation of the external forces. To avoid this resonance problem during the design stage, the technique of fluid-structure interaction has been developed, but the higher-order effect of the blade geometry deformation is not yet considered in evaluating the added mass effects. In this paper the fluid boundary-value problem is formulated by the potential-based panel method in the inviscid fluid region with the velocity inflow due to the body deformation, and the structural response of the solid body under the hydrodynamic loading is solved by applying the finite element method which implements the 20-node iso-parametric element model. The fluid-structure problem is solved iteratively. A basic fluid-sturcture interaction study is performed with the simple rectangular plates of thin thickness with various planform submerged in the water of infinite extent. The computations show good correlation with the experimental results of Linholm, et al. (1965).

Aerodynamic behaviour of double hinged articulated loading platforms

  • Zaheer, Mohd Moonis;Hasan, Syed Danish;Islam, Nazrul;Aslam, Moazzam
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.17-42
    • /
    • 2021
  • Articulated loading platforms (ALPs) belongs to a class of offshore structures known as compliant. ALP motions have time periods falling in the wind excitation frequency range due to their compliant behaviour. This paper deals with the dynamic behavior of a double hinged ALP subjected to low-frequency wind forces with random waves. Nonlinear effects due to variable submergence, fluctuating buoyancy, variable added mass, and hydrodynamic forces are considered in the analysis. The random sea state is characterized by the Pierson-Moskowitz (P-M) spectrum. The wave forces on the submerged elements of the platform's shaft are calculated using Morison's Equation with Airy's linear wave theory ignoring diffraction effects. The fluctuating wind load has been estimated using Ochi and Shin wind velocity spectrum for offshore structures. The nonlinear dynamic equation of motion is solved in the time domain by the Wilson-θ method. The wind-structure interactions, along with the effect of various other parameters on the platform response, are investigated. The effect of offset of aerodynamic center (A.C.) with the center of gravity (C.G.) of platform superstructure has also been investigated. The outcome of the analyses indicates that low-frequency wind forces affect the response of ALP to a large extent, which otherwise is not enhanced in the presence of only waves. The mean wind modifies the mean position of the platform surge response to the positive side, causing an offset. Various power spectral densities (PSDs) under high and moderate sea states show that apart from the significant peak occurring at the two natural frequencies, other prominent peaks also appear at very low frequencies showing the influence of wind on the response.

Finite Element Analysis of Continuous Beam Vibration under Pedestrian Loading Considering Moving Mass Effect (이동 질량 효과를 고려한 연속 보의 보행하중 진동 유한요소 해석)

  • Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.309-316
    • /
    • 2022
  • This study proposes a finite element analysis method that can analyze the vibration of a beam by considering the inertia effect of moving masses in a vertical direction. The proposed method is effective when a precise interaction analysis is not required. The inertial effects of the moving masses are included in the equation of motion, and the interaction forces between the masses and the beam are considered only as external loads. Time domain analyses were performed using Abaqus, a general-purpose finite element analysis software, and an implementation method using multi-point constraints wais presented to link the displacements of the beam element nodes and moving rigid masses. The proposed method was verified by comparing its solution with that obtained using an existing analytical method, and the analysis results for continuous beam vibrations under dynamic gait loadings were used to examine the mass effect of pedestrians.

Preparation of Dexamethasone-21-palmitate Incorporated Lipid Nanosphere: Physical Properties by Varying Components and Ratio of Lipid (팔미틴산덱사메타손이 봉입된 지질나노입자의 제조: 지질종류와 함량에 따른 물리적 특성)

  • Jung, Suk-Hyun;Lee, Jung-Eun;Seong, Ha-Soo;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.6
    • /
    • pp.355-361
    • /
    • 2006
  • Intraarticular corticosteroid injections for therapy of rheumatic arthritis are administered with the aim of optimal local anti-inflammatory effect at the injection site. Since the side effects of corticosteroidal drug, dexamethasone(DEX), administered at hish dose limited the therapeutic efficacy, there was a need to design a new drug delivery system for controlled release of dexamethasone. As a prodrug for continuous therapeutic efficacy, dexamethasone-21-palmitate(DEX-PAL) was prepared via esterification of palmitoyl chloride and dexamethasone. DEX-PAL was identified by NMR and MASS analysis. DEX-PAL or DEX was entrapped in lipid nanosphere which could be prepared by using a self emulsification-solvent evaporation method. Physicochemical characteristics such as mean particle diameter, zeta potential and drug loading efficiency of the lipid nanospheres were investigated with variation of either the kind of lipid or the lipid composition. The lipid nanospheres had a mean diameter $83{\sim}95$ nm and DEX-PAL loading efficiency of up to 95%. The drug loading efficiency increased with the increase of aliphatic chain length attached to the phospholipid. The incorporation of cationic lipid was very efficient for both reducing particle size of lipid nanospheres and enhancing drug loading efficiency. The lipid nanospheres containing DEX-PAL may be a promising novel drug carrier for the controlled release of the poorly water-soluble drugs.

Variables affecting strain sensing function in cementitious composites with carbon fibers

  • Baeza, F.J.;Zornoza, E.;Andion, L.G.;Ivorra, S.;Garces, P.
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.229-241
    • /
    • 2011
  • In this work, cement paste samples with 1% (by cement mass) of a conductive carbon fiber admixture have been studied under uniaxial compression. Three different arrangements were used to measure the resistivity of the samples. According to the results obtained, the resistance should be measured using the four wire method in order to obtain good sensitivity and repeatability. The effect of the load value and the load rate on the fractional change of the volume resistivity has been determined. It has been observed that the gage factor (fractional change in resistance respect to strain) increases when the maximum load is increased, and the loading rate does not affect significantly this parameter. The effect of the sample ambient humidity on the material piezoresistivity has also been studied, showing that the response of the composite is highly affected by this parameter.

Global Behavior Analyses of Rock Mass Structures with Defects Using Damage Tensor (Damage Tensor를 이용한 손상된 암반구조체의 거동해석)

  • 이상호;이형기;허용학;김재철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.133-140
    • /
    • 2000
  • The objective of this study is to develop a damage model based on damage mechanics that can be used to analyze the mechanical behavior of structures with defects and the global behavior of damaged structures. A modified second order damage tensor that can be applied to finite element analysis is used to reflect the effect of damage. The damage stress computed from the effective stress is considered as an additional loading term acting on nodes and can represent the effect of crack surface. The accuracy of the proposed algorithm is verified by comparing the analysis results with the experimental data from other studies and the analysis results based on transverse isotropic theory. The developed damage model is applied to the analyses of structures with cracks under linear elastic condition. Numerical results show that the developed model can effectively analyze the global behavior of damaged structures.

  • PDF

Variation of Porosity and Gas Permeability of Gas Diffusion Layers Under Compression (가스확산층의 압축에 따른 공극률 및 기체투과율의 변화)

  • Lee, Yongtaek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.767-773
    • /
    • 2013
  • This study suggested the variations of porosity and gas permeability of gas diffusion layers (GDLs), which are easily deformed among the components of a highly compressed PEMFC stack. The volume change owing to compression was measured experimentally, and the variations in the porosity and gas permeability were estimated using correlations published in previous literature. The effect of polytetrafluoroethylene (PTFE) which is added to the GDLs to enhance water discharge was investigated on the variations of porosity and gas permeability. The gas permeability which strongly affects the mass transport through GDL, decreases sharply with increasing compression when the GDL has high PTFE loading. As a result, the mass transport through the pore network of GDL can be changed considerably according to the PTFE loading even with the same clamping force. The accuracy of modeling of transport phenomena through GDL can be improved due to the enhanced correlations developed based on the results of this study.

A Study on the Removal of Phenol by Hybrid Process coupling adsorption with microfiltration (흡착과 정밀여과의 혼성공정에 의한 페놀 제거에 관한 연구)

  • ;;Fane, A. G.
    • Membrane Journal
    • /
    • v.6 no.2
    • /
    • pp.109-116
    • /
    • 1996
  • This work is a fundamental study for applying hybrid process coupling adsorption with microfiltration to waste-water treatment. Phenol was separated by adsorption on powdered activated carbon, adsorbed phenol with activated carbon was separated by microfiltration. As the particle size in suspension increased, filtration resistance decreased, and effect of particle concentration on resistance was less pronounced. The rate of uptake was greatly dependent on the degree of phenol loading. For a smaller amounts of activated carbon, the change of permeate concentration before break point and phenol loading with time were steeper than in the case of large amounts. Permeate concentration before break point decreased with decreasing particle size, this could be due to the increase of outer surface of particle and film mass transfer coefficient.

  • PDF

Control of buildings using single and multiple tuned liquid column dampers

  • Chang, C.C.;Hsu, C.T.;Swei, S.M.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.77-93
    • /
    • 1998
  • Some design formulas and design procedures for single and multiple tuned liquid column dampers (TLCDs) are proposed in this study. Previous studies show that if the properties of the TLCD system are properly selected then the TLCD could be as effective as the traditional tuned mass dampers. In addition, the TLCD system offers advantages such as flexibility in terms of installation, little maintenance required, and potentials for multiple usage, etc., which are incomparable by other mechanical types of dampers. In this paper, a set of optimal properties such as length and head loss of a TLCD system are derived under the assumption that the building vibrates in a dominate mode and is subjected to Gaussian white noise excitation. A design procedure for a single TLCD system will be illustrated and discussed. Due to the nonlinearity in the damping term, the TLCD system is sensitive to the loading intensity. This loading sensitivity could limit the application range of the TLCD system. It will be shown in this paper that such a nonlinear effect can be reduced by using multiple TLCDs. As a demonstrative example, the control effects on a flexible building modeled as a single degree-of-freedom system subjected to white noise excitation will be analyzed and discussed using single or multiple TLCDs.

Analysis of colliding index on impact behavior of RC columns under repeated impact loading

  • Tantrapongsaton, Warakorn;Hansapinyo, Chayanon;Wongmatar, Piyapong;Limkatanyu, Suchart;Zhang, Hexin;Charatpangoon, Bhuddarak
    • Computers and Concrete
    • /
    • v.30 no.1
    • /
    • pp.19-32
    • /
    • 2022
  • This paper presents an investigation into the failure of RC columns under impact loadings. A numerical simulation of 19 identical RC columns subjected to single and repeated impact loadings was performed. A free-falling hammer was dropped at midspan with the same total kinetic energy input but varying mass and momentum. The specimens under the repeated impact test were struck two times at the same location. The colliding index, defined as the impact energy-momentum ratio, was proposed to explain the different impact responses under equal-energy impacts. The increase of colliding index from low to high indicates the transition of the impact response from static to dynamic and failure mode from flexure to shear. This phenomenon was more evident when the column had a greater axial load and was impacted with a high colliding index. The existence of the axial load had an inhibitory effect on the crack development and increased the shear resistance. The second impact changes the failure mode from flexural to brittle shear as found in the specimen with 20% axial load subjected to high a colliding index. Moreover, a deflection prediction equation based on the impact energy and force was limited to the low colliding index impact.