• Title/Summary/Keyword: Mass spectrometer

Search Result 729, Processing Time 0.023 seconds

Detection of Ions in ECR $H_2$ Plasma Using Omegatron Mass Spectrometer (오메가트론을 이용한 ECR 수소 플라프마 내의 이온 검출)

  • Park, Jung-Woo;Jeong, Heui-Seob;Kim, Gon-Ho;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.459-461
    • /
    • 1995
  • An omegatron mass spectrometer was designed and fabricated. Experiments have been performed to demonstrate the instrument's operation in the ECR plasma device. By using this analyzer, mass spectra have been obtained in hydrogen plasmas, and typical results are presented. In the plasma omegatron, downstreaming plasma generated by ECR are entering the analyzer through a smsll floating aperture. We employ a biasing technique to reduce the ion velocity along the magnetic field and to keep the ions from drifting to the side pintos, and thus achieved improved ion collection and sensitivity. Mass spectra obtained show that main positive ion components are $H_3{^+}$ and $H_2{^+}$ with the density ratio of $H_2{^+}$ to $H_3{^+}$ $\simeq$ 0.2.

  • PDF

A Study on the Linetic Energy of the Laser-Ablated Cation Using Time-of-Flight Mass Spectrometry

  • 신동남;임훙선;정경훈
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.171-174
    • /
    • 1997
  • The initial kinetic energy of laser-ablated Zn cation has been investigated via time-of-flight mass spectrometry. The flight times of the ions have been measured with a high voltage pulse on the extract electrode in the mass spectrometer, which has been delayed from the laser pulse. The time-of-flight equation including the initial kinetic energy term of the ion has been derived for the mass spectrometer. The optimum value of the initial kinetic energy has been extracted by fitting the measured flight times into the time-of-flight equation. The initial kinetic energy of the ions generated by Nd:YAG laser (532 nm) at the power density of 5 × 107 W/cm2 has been determined to be 22-44 kJ/mol.

Study on the Residue Analysis of Organophosphorus and Organochlorine Pesticides with Ion Trap and Quadrupole Mass Spectrometer (Ion Trap Mass Spectrometer와 Quadrupole Mass Spectrometer를 이용한 유기인제 및 유기염소제 농약 분석에 관한 연구)

  • Rhee, Jae-Seong;Park, Hyun-Mee;Er, Yon-Woo
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.12
    • /
    • pp.902-909
    • /
    • 1995
  • Detection limit as well as calibration curves on organophosphorus pesticide(dimethoate, diazinon, parathion-methyl, fenitrothion, malathion) and BHCs were measured for evaluation of utility on qualitative or quantitative analysis of pesticides with ion Trap mass spectrometer and quadrupole mass spectrometer. As ionization source, EI and CI were adopted for qualitative analysis of pesticides by comparison of each fragmentation pattern. At the same time, the utility as trace analysis techniques through scan or selected ion monitoring(SIM) mode was evaluated. With ion trap for all pesticides, detection limit(DL, 1 ${\mu}L$ injection) on scan mode was ranged 0.008∼0.225 ng at signal to noise ratio 3. With quadrupole DL on scan mode was ranged 0.23∼3.1 ng over 0.032∼0.68 ng on SIM mode. The calibration curve with ion trap generated good linearity over 0.99 as correlation coefficient. As clean up procedure, Bio Beads S-X3 was used for the separation of oils from five organophosphorous pesticides in flour extractant showing more than 80% as recovery at most cases. In case of BHCs in jinseng with Florisil column, the recovery of pesticides has been 60% to 90%.

  • PDF

Quantitative Analysis of the Twenty Marker Components in Gwakhyangjeonggi-san using Ultra-Performance Liquid Chromatography with Mass Spectrometer (LC-MS/MS를 이용한 곽향정기산(藿香正氣散) 추출물 중 20종 성분의 함량분석)

  • Seo, Chang-Seob;Shin, Hyeun-Kyoo
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.2
    • /
    • pp.113-120
    • /
    • 2014
  • Generally, Gwakhyangjeonggi-san has been used for treatment of diarrhea-predominant irritable bowel syndrome. In this study, an ultra-performance liquid chromatography-electrospray ionization-mass spectrometer method was established for the simultaneous quantification of marker compounds 1-20 in Gwakhyangjeonggi-san water extract. All analytes were separated by gradient elution using two mobile phases on a UPLC BEH $C_{18}$ ($100{\times}2.1mm$, $1.7{\mu}m$) column and maintained at $45^{\circ}C$. The injection volume was $2.0{\mu}L$ and the flow rate was 0.3 mL/min with detection at mass spectrometer. Regression equations of the compounds 1-20 were acquired with $r^2$ values ${\geq}0.9950$. The values of limit of detection and quantification of all analytes were 0.01-2.79 ng/mL and 0.03-8.37 ng/mL, respectively. The amounts of the compounds 1-20 in Gwakhyangjeonggi-san water extract were not detected $-3,236.67{\mu}g/g$. The established LC-MS/MS methods will be valuable to improve quality control of traditional herbal formula, Gwakhyangjeonggi-san.

Estimation of Mass Discrimination Factor for a Wide Range of m/z by Argon Artificial Isotope Mixtures and NF3 Gas

  • Min, Deullae;Lee, Jin Bok;Lee, Christopher;Lee, Dong Soo;Kim, Jin Seog
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2403-2409
    • /
    • 2014
  • Absolute isotope ratio is a critical constituent in determination of atomic weight. To measure the absolute isotope ratio using a mass spectrometer, mass discrimination factor, $f_{MD}$, is needed to convert measured isotope ratio to real isotope ratio of gas molecules. If the $f_{MD}$ could be predicted, absolute isotope ratio of a chemical species would be measureable in absence of its enriched isotope pure materials or isotope references. This work employed gravimetrically prepared isotope mixtures of argon (Ar) to obtain $f_{MD}$ at m/z of 40 in the magnetic sector type gas mass spectrometer (gas/MS). Besides, we compare the nitrogen isotope ratio of nitrogen trifluoride ($NF_3$) with that of nitrogen molecule ($N_2$) decomposed from the same $NF_3$ thermally in order to identify the difference of $f_{MD}$ values in extensive m/z region from 28 to 71. Our result shows that $f_{MD}$ at m/z 40 was $-0.044%{\pm}0.017%$ (k = 1) from measurement of Ar artificial isotope mixtures. The $f_{MD}$ difference in the range of m/z from 28 to 71 is observed $-0.12%{\pm}0.14%$ from $NF_3$ and $N_2$. From combination of this work and reported $f_{MD}$ values by another team, IRMM, if $f_{MD}$ of $-0.16%{\pm}0.14%$ is applied to isotope ratio measurement from $N_2$ to $SF_6$, we can determine absolute isotope ratio within relative uncertainty of 0.2 %.

Discrimination of Grading Pungency for Red Peppers Spice Using Electronic Nose Based on Mass Spectrometer (고춧가루의 매운 맛 등급화를 위한 Mass Spectrometer를 바탕으로 한 전자코 분석)

  • Kang, Jin Hee;Son, Hee-Jin;Hong, Eun-Jeung;Noh, Bong-Soo
    • Food Engineering Progress
    • /
    • v.14 no.1
    • /
    • pp.35-40
    • /
    • 2010
  • Electronic nose (E-nose) was assessed for grading pungency of powdered red pepper. Complex pretreatments are not required for flavor analysis unlike HPLC or Scoville tests. Mild and pungent taste of powdered red pepper were mixed at various concentrations of 0, 25, 50, 75, and 100%. Those were analyzed using mass spectrometer-based E-nose. Discriminant function analysis (DFA) was conducted on E-nose data. The $R^{2}$ and F-value of dicriminant function first score (DF1) were 0.9946 and 355.65, respectively, when the samples were separated by a relative degree of pungent taste. DF1 value decreased with increasing the amount of powdered red pepper with a pungent taste. It is similar to the increase in the concentration of capsaicin. Increasing the amount of red pepper powder, dicriminant function second score (DF2) values were moved from the negative position into the positive position. The $R^{2}$ and F-value of DF1 were 0.9890, 165.17 and DF2 were 0.9219, 21.64. Also, the results by MS based E-nose agreed to that by HPLC. There is the potential to grade pungent taste of powdered red pepper using the E-nose.

Development of a Prototype Mass Spectrometer (질량 분석기의 원형 모델 개발)

  • Jingeun Rhee;Nam-Seok Lee;Sung Won Kang;Seontae Kim;Kyu-Ha Jang;Yu Yi;Ik-Seon Hong;Cheong Rim Choi;Kyoung Wook Min;Jongil Jung
    • Journal of Space Technology and Applications
    • /
    • v.3 no.1
    • /
    • pp.86-99
    • /
    • 2023
  • The mass spectrometer, being an essential scientific instrument for uncovering the origin of the solar system and life, has been used since the early 1970s on board spacecraft to obtain information of neutral and ionized elements in the atmosphere and surface of the moon, planets, asteroids, and comets. According to the 4th Basic Plan for the Promotion of Space Development (2023-2027), Korea plans to conduct lunar landing in 2032 and Mars landing in 2045 as the core goals of the plan and focuses on developing the technologies required for unmanned robotic exploration missions. In this regard, it is crucial to develop the technology of a mass spectrometer, which is the most fundamental payload for space exploration for maximized scientific achievements, however never tried before in any domestic space missions. We describe in this paper the principle of a domestically developed quadrupole mass spectrometer, its prototype model, and the test results of its performance. We conclude this paper with intended future improvements.

Syringe Infusion-based Contactless Atmospheric Pressure Ionization Mass Spectrometry for Small and Large Biomolecules

  • Lo, Ta-Ju;Chang, Chia-Hsien;Chen, Yu-Chie
    • Mass Spectrometry Letters
    • /
    • v.3 no.4
    • /
    • pp.87-92
    • /
    • 2012
  • In this study, we explored a new approach for generating ions of organics and biomolecules using contactless atmospheric pressure ionization (C-API). That is, a tapered capillary (~20 cm) was connected to a syringe, which was coupled to a syringe pump for providing a given flow rate to introduce sample solution to the proximity of a mass spectrometer. The gas phase ions derived from analytes were readily formed in the capillary outlet, which was very close to the mass spectrometer (~1 mm). No external electric connection was applied on the capillary emitter. This setup is very simple, but it can function as an ion source. This approach can be readily used for the analysis of small molecules such as amino acids and large molecules such as peptides and proteins. The limit of the detection of this approach was estimated to be ~10 pM when using bradykinin as the sample. Thus, we believe that this approach should be very useful for being used as an alternative ion source because of its low cost, high sensitivity, simplicity, and ease of operation.

A 235U mass measurement method for UO2 rod assembly based on the n/γ joint measurement system

  • Yang, Jianqing;Zhang, Quanhu;Su, Xianghua;Li, Sufen;Zhuang, Lin;Hou, Suxia;Huo, Yonggang;Zhou, Hao;Liu, Guorong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1036-1042
    • /
    • 2020
  • Fast-Neutron Multiplicity Counter based on Liquid Scintillator Detector can directly measure the fast neutron multiplicity emitted by UO2 rod. HPGe gamma spectrometer; which has superior energy resolution; is routinely used for the gamma energy spectrum measurement. Combing Fast-Neutron Multiplicity Counter and HPGe γ-spectrometer, the n/γ joint measurement system is developed. The fast neutron multiplicity and gamma energy spectrum of UO2 rod assemblies under different conditions are measured by the n/γ joint measurement system. The induced fission rate and the 235U abundance, thereby the 235U mass; can be obtained for UO2 rod assemblies. The 235U mass deviation of the measured value from the reference value is less than 5%. The results show that the n/γ joint measurement system is effective and applicable in the measurement of the 235U mass in samples.

Analysis of Gases in Nuclear Fuel Rod by Quadrupole Mass Spectrometry (Quadrupole Mass Spectrometry를 이용한 핵연료봉내 기체분석)

  • Kim, Seung-Soo;Kang, Moon-Ja;Park, Soon-Dal;Park, Yong-Joon;Joe, Kih-Soo
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.94-98
    • /
    • 1999
  • An analysis method of components and isotopic compositions of low pressure gases from nuclear fuel rod using quadrupole mass spectrometer was studied. The calibration curves of each gas in pure and mixtures of He, $N_2$, $O_2$, Ar, Kr and Xe were obtained as a function of pressure and concentration, respectively. Effect of molecular leak, located between sample chamber and analyser chamber, on the sensitivites was also studied. The results suggested that samples could be analysed accurately at the same analytical condition as that of synthetic gas mixture. The difference of sensitivities among isotopes of Kr and Xe was not observed in the range of measured pressure.

  • PDF