• Title/Summary/Keyword: Mass spectral fragments

Search Result 4, Processing Time 0.018 seconds

Mass Spectroscopical Properties of Benzoyl Derivatives of Five-membered Monoheterocycles and Determination of Aromaticity Indices

  • Jeon, Kyu-Ok;Jun, Jung-Ho;Yu, Ji-Sook;Lee, Chang-Kiu
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1840-1844
    • /
    • 2004
  • The mass spectra of benzophenones, 2-benzoylthiophenes, 2-benzoylpyrroles, and 2-benzoylfurans which have substituents at the m- and p-positions of the benzoyl ring were analyzed to find correlations against the Hammett substituent parameter ${\sigma}\;and\;{\sigma}^+$. The slopes of the plots of the intensities of the fragments from the heterocycles against those of the benzene gave sets of meaningful values for the indices of aromaticity of the heterocycles: benzene 1.00; thiophene 0.94, pyrrole 0.82, and furan 0.74.

Tracing history of the episodic accretion process in protostars

  • Kim, Jaeyeong;Lee, Jeong-Eun;Kim, Chul-Hwan;Hsieh, Tien-Hao;Yang, Yao-Lun;Murillo, Nadia;Aikawa, Yuri;Jeong, Woong-Seob
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.66.3-67
    • /
    • 2021
  • Low-mass stars form by the gravitational collapse of dense molecular cores. Observations and theories of low-mass protostars both suggest that accretion bursts happen in timescales of ~100 years with high accretion rates, so called episodic accretion. One mechanism that triggers accretion bursts is infalling fragments from the outer disk. Such fragmentation happens when the disk is massive enough, preferentially activated during the embedded phase of star formation (Class 0 and I). Most observations and models focus on the gas structure of the protostars undergoing episodic accretion. However, the dust and ice composition are poorly understood, but crucial to the chemical evolution through thermal and energetic processing via accretion burst. During the burst phase, the surrounding material is heated up, and the chemical compositions of gas and ice in the disk and envelope are altered by sublimation of icy molecules from grain surfaces. Such alterations leave imprints in the ice composition even when the temperature returns to the pre-burst level. Thus, chemical compositions of gas and ice retain the history of past bursts. Infrared spectral observations of the Spitzer and AKARI revealed a signature caused by substantial heating, toward many embedded protostars at the quiescent phase. We present the AKARI IRC 2.5-5.0 ㎛ spectra for embedded protostars to trace down the characteristics of accretion burst across the evolutionary stages. The ice compositions obtained from the absorption features therein are used as a clock to measure the timescale after the burst event, comparing the analyses of the gas component that traced the burst frequency using the different refreeze-out timescales. We discuss ice abundances, whose chemical change has been carved in the icy mantle, during the different timescales after the burst ends.

  • PDF

Comparative Phytochemical Profiling of Methanolic Extracts of Different Parts of White Dandelion (Taraxacum coreanum) using Hybrid Ion-mobility Q-TOF MS

  • Hyemi Jang;Mira Choi;Eunmi Lee;Kyoung-Soon Jang
    • Mass Spectrometry Letters
    • /
    • v.15 no.2
    • /
    • pp.95-106
    • /
    • 2024
  • Taraxacum coreanum, known as the native Korean white dandelion, has been historically used in traditional medicine due to its various therapeutic properties. However, the specific benefits and mechanisms of white dandelion in alleviating particular symptoms or diseases remain uncertain due to the complexity of its phytochemical profile. In this study, we aimed to elucidate the phytochemical profiles of methanolic extracts of different parts of the white dandelion (flower, leaf, stem, and root) using hybrid ion-mobility Q-TOF MS. Using the trapped ion mobility-based PASEF technique, 3715 and 2114 molecular features with MS2 fragments were obtained in positive and negative ion modes, respectively, and then a total of 360 and 156 phytochemical compounds were annotated by matching with a reference spectral library in positive and negative ion modes, respectively. Subsequent feature-based molecular networking analysis revealed the phytochemical differences across the four different parts of the white dandelion. Our findings indicated that the methanolic extracts contained various bioactive compounds, including lipids, flavonoids, phenolic acids, and sesquiterpenes. In particular, lipids such as linoleic acids, lysophosphatidylcholines, and sesquiterpenoids were predominantly present in the leaf, while flavonoid glycosides and lysophosphoethanolamines were notably enriched in the flower. An assessment of the total phenolic content (TPC) and total flavonoid content (TFC) of the methanolic extracts revealed that the majority of phytochemicals were concentrated in the flower. Interestingly, despite the root extract displaying the lowest TPC and TFC values, it exhibited the highest radical scavenging rate when normalized to TPC and TFC, suggesting a potent antioxidant effect. These findings and further investigations into the biological activities and medicinal potential of the identified compounds, particularly those exclusive to specific plant parts, may contribute to the development of novel therapeutic agents derived from white dandelion.

Establishment of a library of fragments for the rapid and reliable determination of anabolic steroids by liquid chromatography-quadrupole time of flight-mass spectrometry

  • Do, Jung-Ah;Noh, Eunyoung;Yoon, Soon-Byung;Choi, Hojune;Baek, Sun-Young;Park, Sung-Kwan;Lee, Sang-Gyeong
    • Analytical Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.10-19
    • /
    • 2017
  • Anabolic steroids have similar structures to testosterone, both of which promote the growth of muscle mass and increase strength. However, the side effects of anabolic steroid use may lead to heart attacks or strokes. Additionally, the excessive use of steroids inhibits the production of the sex hormones in the body via a negative feedback loop, which results in testicular atrophy in males and amenorrhea in females. Currently, the method of choice used to test for the presence of anabolic steroids is GC-MS. However, GC-MS methods require chemical derivatization of the steroid sample to ensure compatibility with the analytical method; therefore, analysis of many different samples is difficult and time consuming. Unlike GC-MS, the liquid chromatography-quadrupole-time of flight mass spectrometry (LC-Q-TOF-MS) method is suitable for many samples. Twenty-two different anabolic steroids were analyzed by LC-Q-TOF-MS with various collision energies (CE). Accurate mass spectral data were obtained using a Q-TOF-MS equipped with an electro-spray ionization source and operated in the positive MS/MS mode for several classes of steroids that are often the targets of testing. Based on the collected data, fragmentation pathways were carefully elucidated. The high selectivity and sensitivity of the LC-Q-TOF-MS instrument combined with these fragmentation pathways offers a new approach for the rapid and accurate screening of anabolic steroids. The obtained data from the 22 different anabolic steroids will be shared with the scientific community in order to establish a library to aid in the screening of illegal anabolic steroids.