• Title/Summary/Keyword: Mass production system

Search Result 937, Processing Time 0.038 seconds

A Study on The Mass Production Weapon System Parts Localization System Engineering Development Management Process Application based on ISO/IEC/IEEE 15288 (ISO/IEC/IEEE 15288 기반 양산단계 무기체계 부품국산화 체계공학 개발관리 절차 적용 연구)

  • Kim, Jang-Eun;Shim, Bo-Hyun;Cho, Yu-Seup;Sung, In-Chul;Han, Dong-Seog
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.3
    • /
    • pp.541-552
    • /
    • 2016
  • Purpose: In this study, we propose that how to approach a effective system engineering and optimize system engineering management process for the mass production weapon system parts localization development process and success in DTaQ. Methods: To approach a effective system engineering for the mass production weapon system parts localization, we analyze a weapon system acquisition process and system engineering process of Republic of Korea and DTaQ parts localization business regulations in advance. after results of analysis of them, we implement a optimized parts localization development system engineering based on ISO/IEC/IEEE 15288. Results: In order to apply International Standard ISO/IEC/IEEE 15288 to the mass production weapon system parts localization development process, we compare the mass production weapon system parts localization acquisition environment with ISO/IEC/IEEE 15288 and analyze them. therefore, It is possible to implement a part of concept stage and development stage of ISO/IEC/IEEE total life cycle stage for the mass production weapon system parts localization development process. To achieve the technical review milestones of DTaQ parts localization business regulations in the selected stages of ISO/IEC/IEEE, the development and management agency perform 2 high rank process and 19 low rank process specified in ISO/IEC/IEEE. Conclusion: When the development and management agency perform the mass production weapon system parts localization development using the proposed system engineering approach, they should easily meet milestone through the clarified requirement and simplified System Engineering output documents in limited development period.

Activity-oriented Modeling of Mass Production System (대량생산 체제의 Simulation을 위한 Activity 중심 Modeling)

  • Choe, Byeong-Gyu;Park, Seong-Ju;Sin, Ha-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.1
    • /
    • pp.119-131
    • /
    • 1986
  • Described in this paper is a modelling methodology for mass production system simulation. The mass production system under consideration consists of various types of flow lines, special purpose production facilities, conveyor lines, palletized carts, and storage facilities. This type of production system is typical in home appliance industry, automobile industry, footwear industry, etc. where a variety of product mix are mass-produced. The modelling methodology is based on the "discrete-event formalism", and an "activity-oriented world view" is adopted to formalize the system description. A distinctive feature of the modelling methodology is that only the static structure (ie, system components) is included in the fixed model. The dynamic structure of the system is specified through a "data-driven" mechanism, which is an extension of the "experimental frame" concept. Each type of system components (ie, flow line, conveyors, carts, etc.) is formally modeled by using Activity Cycle Diagrams. The issue of "model structuring" is also addressed. The modeling methodology has been successfully applied in a real simulation study of a mass production system.

  • PDF

An autonomous cooperative System under the concept of Holonic Manufacturing (Holonic Manufacturing 개념하의 자주.협동적인 시스템)

  • 박홍석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.512-515
    • /
    • 1996
  • A mass production system was implemented to reduce a manufacturing cost in a way of copying with a strong world market competition. However customer's demands are changing so rapidly and the mass production system is nolonger competitive to meet the demands. FMS (Flexible Manufacturing System) has been introduced as a replacement for the mass production system, but it still does not meet system's requirements. A new manufacturing system, called a holonic manufacturing system(HMS), is emerging. In this paper it is introduced an autonomous cooperative system under the concept of HMS.

  • PDF

A Holonic Manufacturing Oriented System (Holonic Manufacturing 지향적인 시스템)

  • Park, Hong-Seok
    • IE interfaces
    • /
    • v.10 no.2
    • /
    • pp.91-97
    • /
    • 1997
  • A mass production system was implemented to reduce a manufacturing cost in a way of copying with a strong world market competition. However customer's demands are changing so rapidly and the mass production system is no longer competitive to meet the demands. FMS(Flexible Manufacturing System) has been introduced as a replacement for the mass production system, but it still does not meet system's requirements. A new manufacturing system, called a holonic manufacturing system (HMS), is emerging. This paper is giving a first approach of a HMS for a multirobot cooperative process.

  • PDF

Mass Production of High-Quality Bonsai through Development of Bottom Irrigation System (저면관수식(底面灌水式) 분상설비(盆上設備)에 의한 고품질(高品質) 분재(盆栽)의 대량생산(大量生産))

  • Lee, Ki-Eui
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.5-14
    • /
    • 2000
  • This study was conducted to cultivate a large quantity of high-quality Bonsai through the development of bottom irrigation system. Bonsai placed on the FRP bed were grown very well by bottom irrigation system compared with direct watering and sprinkler system. It was concluded that bottom irrigation system was possible to reduce considerable manual labor and produce mass production of high-quality Bonsai.

  • PDF

A Basic Study of Production System Development of Free-form Concrete Panels (비정형 콘크리트 패널 생산 시스템 구축 기초연구)

  • Son, Seung-Hyun;Kim, Ki-Ho;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.70-71
    • /
    • 2019
  • Glass fiber reinforced concrete (GFRC) is very suitable as a material for free-form concrete panels (FCPs) because of its lightweight, strong, moldable, durable and sustainable properties. GFRC is superior in construction and maintenance compared with materials such as steel, aluminium, titanium, glass and plastic, and is advantageous in cost. However, GFRC is being produced by skilled craftsmen, and still lacks the technology to economically produce high quality FCPs. Currently, there is a technology to automatically and accurately produce FCPs. However, the developed technology can not be applied to the field with simple production technology without production line for mass production. To solve this problem, the purpose of this study is a basic study of production system development of free-form concrete panels. This study introduces the developed FCPs production technology and builds FCP production system for mass production. The results of this study will be used as basic data for the commercial production of FCPs in the future.

  • PDF

A Case Study on the Process Improvement Using JIT Concept in a Company (제조업체에 있어서 JIT 개념을 활용한 공정개선 사례연구)

  • 권병우;이동형;김진수;임준묵
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.55
    • /
    • pp.43-50
    • /
    • 2000
  • Recently, the companies can't avoid the change toward the jobbing production from mass production because manufacturing types are changed from manufacturing-oriented to customer-oriented for the security of competitive power among the related companies. The jobbing production system usually has such problems as low productivity, high unit cost, much stocks, long manufacturing time and one-sided decision of delivery date compared with the mass production. In order to settle these problems in the jobbing production system, we introduced the JIT production system including 3 regulations & 6S activities and Kanban system etc. The effective operation of JIT production system makes the processes efficiently and reduces the unneeded stocks and maximizes the revenue of company.

  • PDF

The Mass Production Weapon System Environmental Stress-Screening Test Design Method based on Cost-effective-Optimization (비용 효과도 최적화 기반 양산 무기체계 환경 부하 선별 시험 설계 방법)

  • Kim, Jangeun
    • Journal of Applied Reliability
    • /
    • v.18 no.3
    • /
    • pp.229-239
    • /
    • 2018
  • Purpose: There is a difficulty in Environmental Stress Screening (ESS) test design for weapon system's electrical/electronic components/products in small and medium-sized enterprises. To overcome this difficulty, I propose an easy ESS test design approach algorithm that is optimized with only one environment tolerance design information parameter (${\Delta}T$). Methods: To propose the mass production weapon system ESS test design for cost-effective optimization, I define an optimum cost-effective mathematical model ESS test algorithm model based on modified MIL-HDBK-344, MIL-HDBK-2164 and DTIC Technical Report 2477. Results: I clearly confirmed and obtained the quantitative data of ESS effectiveness and cost optimization along our ESS test design algorithm through the practical case. I will expect that proposed ESS test method is used for ESS process improvement activity and cost cutting of mass production weapon system manufacturing cost in small and medium-sized enterprises. Conclusion: In order to compare the effectiveness of the proposed algorithm, I compared the effectiveness of the existing ESS test and the proposed algorithm ESS test based on the existing weapon system circuit card assembly for signal processing. As a result of the comparison, it was confirmed that the test time was reduced from 573.0 minutes to 517.2minutes (9.74% less than existing test time).

A Study on the Development of Multiple Crate Stacking and Picking System (복합 포장용 상자의 보관 및 출하 시스템 개발에 관한 연구)

  • Hong, Min-Sung;Shin, Dae-Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.79-85
    • /
    • 2007
  • The modem industry age began when the conveyer system was introduced by Ford to produce model "T". The conveyer system is designed to optimize and maximize mass production of a specific item. Nowadays, however, accommodating to individual tastes has become an important factor in selection of products. Thus, rather than the mass production of one item, producing fewer but a wide variety of goods became important. To give flexibility and elasticity to the conveyer system, a new method of transportation where it is possible to choose a specific item is necessary. Therefore mall quantity and high-volume mass production was decrescent and small quantity batch production was expanded. In this paper, we developed multiple crate stacking and picking system to give flexibility to the conveyer system. First, we verified the conceptually designed system through manufacture. Second, we solved the problems that would happen on the actual field using pneumatic system. Finally, we optimized the system through FEM technique. This system works with stability and fast speed and can improve work efficiency which would minimize the losses resulting from too much dependence on manual labor.

New SMOLED Deposition System for Mass Production

  • Lee, J.H.;Kim, C.W.;Choi, D.K.;Kim, D.S.;Bae, K.B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.407-410
    • /
    • 2003
  • We will introduce our new concept deposition system for SMOLED manufacturing in this conference. This system is designed to deposit organic and metal material to downward to overcome the limit of substrate size and process tact time hurdle for OLED mass production, and is organized with organic deposition chamber, substrate pre-cleaning chamber, metal deposition chamber and encapsulation system. These entire process chambers are integrated with linear type substrate transfer system. We also compare our new SMOLED manufacturing system with conventional vacuum deposition systems, and show basic organic thin film property data, organic material deposition property data, and basic device property.

  • PDF