• Title/Summary/Keyword: Mass of working fluid

Search Result 165, Processing Time 0.029 seconds

Performance Analysis of Ammonia-Water Regenerative Rankine Cycles for Use of Low-Temperature Energy Source (저온 열원 활용을 위한 암모니아-물 재생 랭킨 사이클의 성능 해석)

  • Kim, Kyoung-Hoon;Han, Chul-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • It is a great interest to convert more energy in the heat source into the power and to improve the efficiency of power generating processes. Since the efficiency of power generating processes becomes poorer as the temperature of the source decreases, to use an ammonia-water mixture instead of water as working fluid is a possible way to improve the efficiency of the system. In this work performance of ammonia-water regenerative Rankine cycle is investigated for the purpose of extracting maximum power from low-temperature waste heat in the form of sensible energy. Special attention is paid to the effect of system parameters such as mass fraction of ammonia and turbine inlet pressure on the characteristics of system. Results show that the power output increases with the mass fraction of ammonia in the mixture, however workable range of the mass fraction becomes narrower as turbine inlet pressure increases and is able to reach 16.5kW per unit mass flow rate of source air at $180^{\circ}C$.

The Effect of PVE Oil on the Evaporation/Condensation Heat Transfer Performance of Fin-tube Heat Exchanger (핀-튜브 열교환기에서 PVE오일이 증발/응축 열전달 성능에 미치는 영향)

  • Lee, Hyun-Woo;Jeong, Young-Man;Lee, Jae-Keun;Park, Nae-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1067-1072
    • /
    • 2009
  • In vapor compression systems which use refrigerant as a working fluid, the oil is commonly used for compressor lubrication. Since the presence of lubrication oil can change the characteristics properties of refrigerant, the oil affects the heat transfer performance of heat exchanger to a large extent. In this paper, we focus on the effect of PVE oil experimentally on heat transfer performance of the fin-tube heat exchangers which use R410A as a refrigerant. To evaluate the heat transfer performance, the refrigerant to air type test facility chamber has been used. Fin-tube heat exchanger with grooved has been tested while according to the oil mass fraction variation from nearly zero to 1.7 wt%. It was found that the low level of oil mass fraction has an obvious effect on heat transfer performance, while the high level seems no significant influence. The influence of the oil mass fraction to heat transfer performance, however, is different between evaporation and condensation.

  • PDF

A Study on Field Applications of Hydration Heat Control in the Mass Concrete Using Oscillating Capillary Tube Heat Pipe (OCHP를 이용한 매스콘크리트 수화열 제어의 현장적용에 관한 연구)

  • Yum, Chi-Sun;Bae, Won-Mahn;Kim, Myung-Sik;Beak, Dong-Il;Kim, Kang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.413-416
    • /
    • 2006
  • In process of the mass concrete structure, the heat of hydration may cause serious thermal cracking. In order to eliminate hydration heat of mass concrete, this paper reports results of hydration heat control of mass concrete using the Oscillating Capillary tube Heat Pipe(OCHP). There were the several RC box molds which shows a difference as compared with each other. One was not equipped with OCHP. The others were equipped with OCHP. All of them were cooled with natural air convection. The OCHP was composed of copper pipe with 11 turns(outer diameter : 4mm, inner diameter : 2.8mm) and heat type was non-looped type. The working fluid was R-22 and its charging ratio was 40% by volume. The core of the concrete temperature was approximately $55^{\circ}C$ in the winter without OCHP. But the concrete temperature with OCHP was reduced its difference in temperature with the outdoor temperature to $12^{\circ}C$. Finally we saw the index figure of the thermal crack of the structures were varied from 0.75 to 1.47.

  • PDF

An Experimental Study on the Dispersion Effect of Hydration Heat in the Mass Concrete Using OCHP (OCHP를 이용한 매스콘크리트 수화열 분산효과에 관한 실험적 연구)

  • Kim, Myung-Sik;Baek, Dong-Il;Kim, Kang-Min;Yum, Chi-Sun;Bae, Won-Mahn
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.437-440
    • /
    • 2006
  • In process of the mass concrete structure, the heat of hydration may cause serious thermal cracking. In order to eliminate hydration heat of mass concrete, this paper results of hydration heat control of mass concrete using the Oscillating Capillary tube Heat Pipe(OCHP). There were the several molds which shows a difference as compared with each other. One was not equipped with OCHP. Other were laid with OCHP, and the other were laid in 100cm, and exposed out 50cm. All of them were cooled with natural air convection. The OCHP was composed of copper pipe(outer diameter : 4mm, inner diameter : 2.8mm) and heat type was non-looped type. The working fluid was R-22 and its charging ratio was 40% by volume. The core of the concrete temperature was approximately $53^{\circ}C$ without OCHP. But the concrete temperature with OCHP was reduced its difference in temperature with the outdoor temperature to $12{\sim}15^{\circ}C$. Finally we saw the index figure of the thermal crack of the structures were varied from 0.6 to 1.6.

  • PDF

Analysis and Performance Test of an Electronic Expansion Valve for CO2 (CO2 냉매용 전자팽창밸브의 해석 및 평가)

  • Kim, Ook-Joong;Yoon, Seok-Ho;Hong, Yong-Ju;Kim, Jeong-Yup;Kang, Sin-Il
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1491-1496
    • /
    • 2009
  • Fluid flow and structural analyses of an electronic expansion valve (EEV) using CO2 as a working refrigerant are carried out to estimate the mass flow rate and maximum stress. An engineering sample EEV that the orifice diameter is 1.8 mm was fabricated. The mass flow rates were measured at various EEV inlet temperatures and pressures for several EEV openings using experimental heat pump system. The sample EEV has over 35 MPa burst pressure and the maximum mass flow rate of CO2 through the EEV increased to 100 g/s at full opening condition.

  • PDF

Characteristic of Heat and Mass Transfer on Helical Absorber Using New Working Fluid (신작동매체를 이용한 헬리컬 흡수기의 열물질전달 특성)

  • Kwon, Oh-Kyung;Lim, Jong-Keuk;Yoon, Jung-In
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.228-233
    • /
    • 2000
  • An experimental study has been performed regarding heat and mass transfer in a falling film absorber of domestic small-sized absorption chiller/heater. Components were concentrically arranged in cylindrical form : from the center, with a series of low temperature generator, absorber and evaporator. The arrangement of such helical-typed heat exchangers allows to make the system more compact as compared to conventional one. Experimental measurements were conducted with a helical absorber using $LiBr+LiI+LiNO_3+LiCl$ and LiBr solutions. As a result, the heat and mass flux performance of $LiBr+LiI+LiNO_3+LiCl$ solution shows the tendency of $2{\sim}5%$ increase. Therefore, $LiBr+LiI+LiNO_3+LiCl$ solution can be taken consideration into applying to small-sized absorption chiller/heater because of using without crystal through high concentration as 4wt% comparing with LiBr solution.

  • PDF

A Study of Supersonic Nozzle Design for Partial Admitted Turbine Used on Organic Rankine Cycle (유기랭킨사이클용 부분분사터빈의 초음속노즐 설계에 대한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.5-12
    • /
    • 2014
  • Organic Rankine Cycle is widely used to convert the low-grade thermal energy to the electrical energy. However, usually available thermal energy is not supplied constantly. This makes hard to use positive displacement expanders. Hence, turbo-expander has merits to apply as an expander in ORC because it can operate well off-design points even though the mass flowrate is fluctuated. The thermal energy fluctuation causes the turbo-expander to operate in partial admission. In addition, supersonic nozzles are required so that the partially admitted turbine operates efficiently. In this study, R245fa was chosen as a working fluid of ORC. A design method and an analysis technique of supersonic nozzle based on R245fa were developed. The shape of the nozzle was designed by the characteristic method. The thermal properties within the nozzle were estimated and the predicted results were agreed well with the computed results.

A Numerical Analysis on High Pressure Control Valve for Offshore (해양구조물용 고압 컨트롤 밸브 수치해석)

  • Yi, Chung-Seub;Jang, Sung-Cheol;Jeong, Hwi-Won;Nam, Tae-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1195-1200
    • /
    • 2008
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD(Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin($C_3H_8O_3$). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve. Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

  • PDF

Design of the miniature Joule-Thomson refrigerator as a cryoprobe (저온 수술 프로브용 소형 Joule-Thomson 냉동기의 설계)

  • Hwang, Gyu-Wan;Jeong, Sang-Kwon;In, Se-Hwan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.86-90
    • /
    • 2007
  • The cryoprobe used in cryosurgery should be fabricated in milimeter-order size for its practical usage. In general a miniature J-T(Joule-Thomson) refrigerator is applied to a cryoprobe. In case of the miniature J-T refrigerator, the mass flow rate of working fluid is small due to considerable friction in a minute flow path. For that reason, the miniature J-T refrigerator has a limited cooling power. To obtain the large cooling power from the J-T refrigerator, the refrigerator should have large mass flow rate and effective J-T temperature drop. These quantities are closely related to the geometry of the heat exchanger and the expansion nozzle in a cryoprobe, and are contradictory. The large mass flow rate leads to the small J-T temperature drop and vice versa in the miniature J-T refrigerator. Therefore, the optimal design of a cryoprobe to achieve maximum cooling power at fixed tube size and fixed operating temperature is required. This paper presents the design procedure of such case.

Numerical Comparison of Thermalhydraulic Aspects of Supercritical Carbon Dioxide and Subcritical Water-Based Natural Circulation Loop

  • Sarkar, Milan Krishna Singha;Basu, Dipankar Narayan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.103-112
    • /
    • 2017
  • Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.