• Title/Summary/Keyword: Mass of recovery water

Search Result 147, Processing Time 0.021 seconds

Analytical Determination of Vitamin B12 Content in Infant and Toddler Milk Formulas by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)

  • Lee, Jung-Hoon;Shin, Jin-Ho;Park, Jung-Min;Kim, Ha-Jung;Ahn, Jang-Hyuk;Kwak, Byung-Man;Kim, Jin-Man
    • Food Science of Animal Resources
    • /
    • v.35 no.6
    • /
    • pp.765-771
    • /
    • 2015
  • The development of a sample preparation method and optimization of the analytical instrumentation conditions were performed for the determination of the vitamin B12 content in emulsified baby foods sold on the Korea market. After removal of the milk protein and fats by chloroform extraction and centrifugation, the vitamin B12 was water extracted from the sample. Following filtration of the solution through a nylon filter, the water-soluble extract was purified by solid-phase extraction using a Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). The solution eluted from the cartridge was dried under a stream of nitrogen gas and reconstituted with 1 mL of water. The sample solution was injected into an LC-MS/MS system after optimizing the mobile phase for vitamin B12 detection. The calibration curve showed good linearity with the coefficient of correlation (r2) value of 0.9999. The limit of detection was 0.03 µg/L and the limit of quantitation was 0.1 µg/L. The method of detection limit was 0.02 µg/kg. The vitamin B12 recovery from a spiking test was 99.62% for infant formula and 99.46% for cereal-based baby food. The sample preparation method developed in this study would be appropriate for the rapid determination of the vitamin B12 content in infant formula and baby foods with emulsified milk characteristics. The ability to obtain stable results more quickly and efficiently would also allow governments to exercise a more extensive quality control inspection and monitoring of products expected to contain vitamin B12. This method could be implemented in laboratories that require time and labor saving.

Simultaneous determination of carbaryl & organophosphorous pesticides in water by liquid chromatography-tandem mass spectrometry (LC/MS/MS를 이용한 수중의 카바릴·유기인계 농약 동시분석)

  • Park, Keun-Young;Shin, Jung-Chul;Pyo, Dongjin
    • Analytical Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.39-46
    • /
    • 2018
  • Carbaryl and seven organophosphorous pesticides were analyzed simultaneously using on-line solid phase extraction (on-line SPE) coupled with liquid chromatography tandem mass spectrometry (LC/MS/MS). The target pesticides are Carbaryl, Methyl demeton, Fenitrothion, Malathion, Parathion, Phenthoate, Diazinon, and EPN. This method includes the direct injection of $500{\mu}L$ in the water sample, a 15 min separation period using a rapid resolution liquid chromatography system with on-line SPE, and detection through electrospray ionization (ESI) positive mode. The percentage of recovery of all pesticides ranged from 85.3 % to 100 %. This method showed an accuracy of ${\geq}90.0%$, possessing limits of detection and quantification within 0.05 to $0.28{\mu}g/L$ and 0.16 to $0.89{\mu}g/L$, respectively. The correlation coefficients (r) for the calibration curves within a range of 0.5 to $8.0{\mu}g/L$ were higher than 0.99. The evaluation results showed the efficacy of the method for all contents, and no pesticides were detected in the water quality sample.

Quantitative Analysis and Qualification of Amitrole Using LC/ESI-MS (LC/ESI-MS를 이용한 아미트롤의 정성확인 및 정량분석)

  • Park, Chan-Koo;Eo, Soo-Mi;Kim, Min-Young;Sohn, Jong-Ryeul;Mo, Sae-Young
    • Analytical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.117-129
    • /
    • 2004
  • Amitrole in environment, difficult to be analyzed by GC or GC/MS due to high polarity and low volatility, was analyzed by LC/ESI/MS in the study. Maximum peak intensity of amitrole in LC/MS/ESI mass spectrum is m/z 85 of protonated molecular ion $(M+H)^+$ with 30V of cone voltage at SIR mode. It was confirmed that ratios between main ion of amitrole, 85 of protonated molecular ion, and m/z 58 fragmented ion of amitrole, had increased corresponding with the increment of cone voltage from 20V to 70V. The isotope molecular weight of amitrole was $86([M+H])^+$ at LC/MS analysis and the mass spectrum ratio between 85 mass and 86 mass was not different by the change of concentration but similar to theoretical ratio(less than 10% standard deviation).The linearity of standard calibration curve under same condition with sample treatment method had $y=1.09354e^6X+26947.2$ and $r^2=0.99$. Recovery rates in water and soil samples were 77.64~83.44% and 71.11~79.44%, respectively. Reliability of the analysis was performed with 5 repeated measurements at each level of standard concentration and the result showed that relative standard deviation was less than 10%; therefore, the extraction and analysis method in the study suggested that it would be reliable to measure amitrole in water and soil media.

Characterization of Alpha Amylase Producing Thielaviopsis ethacetica and Its Raw Starch Hydrolyzing Ability on Different Agricultural Substrates

  • Dissanayaka, Dissanayaka M.S.;De Silva, Sembukuttige N.T.;Attanayaka, D.P.S.T.G.;Kurera, Mihidukulasuriya J.M.S.;Fernando, Charakrawarthige A.N.
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.412-422
    • /
    • 2019
  • The present study reports the morphological and molecular characterization of the fungal strain, CMSS06 and evaluates its raw starch hydrolyzing ability in four different agricultural substrates (rice bran, banana peel, cassava tubers, and coconut water). The potential use of each agricultural substrate to replace the expensive fermentation media was evaluated with six different fermentation media: rice bran (RB), banana peel (BP), cassava starch (CS), cassava in coconut water (CSCW), cassava in modified coconut water (CMCW), and pure Coconut water (CW). The fungal strain CMSS06 was identified as Thielaviopsis ethacetica by the analysis of the ITS sequences. The T. ethacetica alpha amylase enzyme exhibited maximum alpha amylase activity at 72 h, pH 7.0, and $40^{\circ}C$ on soluble starch. This species resulted in the highest enzyme activity (mU/ml) of 26.06, 10.89, 58.82, 14.2, and 54.67 with the RB, BP, CS, CSCW, and CMCW fermentation media, respectively. The results indicate that CS can be used as a carbon substrate and CMCW can be used to accelerate the fermentation by T. ethacetica. The enzyme was partially purified by 40-60% ammonium sulphate fraction, and it showed total enzyme activity, total protein content, specific activity, purification fold, and a recovery of 2400 mU, 30 mg, 80 mU/mg, 2.7, and 71.1%, respectively. The molecular mass of the T. ethacetica alpha amylase was estimated on SDS-PAGE, and two bands around 50 kDa and 70 kDa were identified. The present study implies that T. ethacetica can produce alpha amylase, and it can be used to hydrolyze raw starch during the fermentation processes.

Separation and recovery of semi-volatile substances of Cnidii Rhizoma, Aucklandiae Radix and Amomum Fructus by reduced pressure collections and GC-MS

  • Lee, In-Ho;Byun, Chang Kyu;Eum, Chul Hun;Kim, Taewook;Lee, Sam-Keun
    • Analytical Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.11-22
    • /
    • 2020
  • When extracting semi-volatile components of herbal medicines using hot water vapor, some substances may react with water vapor or oxygen, and some volatile substances may be lost, when using an organic solvent extraction method has the disadvantage that it may contain a non-volatile material and residual organic solvent. In addition, it is inefficient to separate semi-volatile substances from herbal medicines into each single component and conduct biological activity research for each component to determine the effective ingredient, and some components may be lost in the separation process. In this study, semi-volatile substances evaporated under two pressure-reduced conditions in Chinese herbal medicines such as Cnidii Rhizoma, Aucklandiae Radix and Amomum Fructus were separated by cooling with liquid nitrogen. Those were analyzed by gas chromatography-mass spectrometry (GC-MS) to identify the components, and this method may be used to study biological activities at the cellular level. The substances separated under reduced pressure, essential oil obtained by simultaneous distillation extraction (SDE) method and substances by using solid phase micro-extraction (SPME) from Cnidii Rhizoma, Aucklandiae Radix and Amomum Fructus were analyzed by GC-MS. In the case of Cnidii Rhizoma and Aucklandiae Radix, there were some differences among the essential oil components obtained by SDE and those identified by low temperature capture (CT) and SPME method, these were believed to be produced by some volatiles reacting with water or oxygen at the boiling point temperature of water.

In Vivo Measurement of Site-Specific Peritoneal Solute Transport Using a Fiber-Optic-based Fluorescence Photobleaching Technique

  • Lee, Donghee;Kim, Jeong Chul;Shin, Eunkyoung;Ju, Kyung Don;Oh, Kook-Hwan;Kim, Hee Chan;Kang, Eungtaek;Kim, Jung Kyung
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • Fluorescence recovery after photobleaching (FRAP) is a well-established method commonly used to measure the diffusion of fluorescent solutes and biomolecules in living cells or tissues. Here a fiber-optic-based FRAP (f-FRAP) system was developed, and validated using macromolecules in water and agarose gels of different concentrations. We applied f-FRAP to measure the site-specific diffusion of fluorescein (NaFluo) in peritoneal membranes (PMs) on the liver, cecum, and kidney of a living rat during peritoneal dialysis. Diffusion of fluorescein in PM varied in a time-dependent manner according to the type of organ ($D_{PM\;on\;Liver}/D_{NaFluo}=0.199{\pm}0.085$, $D_{PM\;on\;Cecum}/D_{NaFluo}=0.292{\pm}0.151$, $D_{PM\;on\;Kidney}/D_{NaFluo}=0.218{\pm}0.110$). The proposed method allows direct quantitative measurement of the three-dimensional diffusion in local PM in vivo, which was previously inaccessible by peritoneal function test methods such as peritoneal equilibration test (PET) and standardized PM assessment (SPA). f-FRAP is promising for local and dynamic assessments of peritoneal pathophysiology and the mass transport properties of PMs, presumed to be affected by variation of tissue structures over different organs and functional changes of the PM with years of peritoneal dialysis.

Octimization of Conditions of Filtration and Concentration of Methanol Extract for Recovery of Paclitaxel from Plant Cell Culture (식물세포배양으로부터 Paclitaxel 회수를 위한 메탄올 추출액의 여과 및 농축 조건 최적화)

  • Kim, Jin-Hyun
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.197-200
    • /
    • 2007
  • This study examined the conditions of filtration and concentration of methanol extract from biomass. Filtration efficiency was improved by adding diatomaceous earth as a filter aid. The optimal amount of diatomaceous earth was 6% (w/w) to reduce the filtration time. The filtration time was reduced by 4.2% in first extraction, 30.0% in second extraction, 22.8% in third extraction, and 19.0% in fourth extraction, respectively. The optimal temperature of water bath was below 50$^{\circ}C$ for preventing paclitaxel degradation during concentration of methanol extract using a rotary evaporator. The temperature of concentrated solution in rotary evaporator was relatively low compared to bath temperature because of latent heat of evaporation. The stopping point of concentration in rotary evaporator for the following step was at a specific gravity of 0.96 of the concentrated solution in terms of the purity and yield of paclitaxel. This information is very useful for mass extraction of biomass for the recovery of paclitaxel from plant cell culture.

Feasibility Study on CLSM for Emergency Recovery of Landfill Bottom Ash (매립장 석탄회의 긴급복구용 CLSM으로 활용 가능성)

  • Ha-Seog Kim;Ki-Suk Kim
    • Land and Housing Review
    • /
    • v.14 no.2
    • /
    • pp.137-145
    • /
    • 2023
  • In this study, the characteristics such as flowability, bleeding rate, and strength of the CLSM (Controlled Low Strength Material) according to physical properties such as particle size distribution and particulate content of the pond ash were investigated as part of the practical development of technology for CLSM using pond ash. As a result of analyzing the properties of the collected pond ash, it was found that the density and particle size distribution characteristics were different. And that the bleeding ratio did not satisfy the standard in the case of the specimen with a large amount of fly ash and a lot of addition of mixing water. As a result of the compressive strength test, the strength development of 0.5 MPa or more for four hours was found to be satisfactory for the specimens using hemihydrate gypsum with a unit binder amount of 200 or more, and the remaining gypsum showed poor strength development. Although it was determined that landfill coal ash can be used as a CLSM material, it is necessary to identify and apply the physical and chemical characteristics of coal ash buried in the ash treatment plant of each power generation company.

Analytical Method for Triazine Herbicide Cyanazine Residues in Major Medicinal Crops (주요 약용작물에 대한 Cyanazine 제초제의 잔류 분석법)

  • Hwang, Young Sun;Lim, Jung Dae;Choung, Myoung Gun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.3
    • /
    • pp.237-245
    • /
    • 2016
  • Background: Cyanazine is used as a pre-emergent herbicide once during the growing season to control weeds of many upland crops worldwide. This study aimed to establish a method to determined cyanazine residue levels in major medicinal crops by using high performance liquid chromatography-UV detection/mass spectometry (HPLC-UVD/MS). Methods and Results: Cyanazine residue was extracted with acetone from the raw products of four representative medicinal plants - Scutellaria baicalensis, Paeonia lactiflora, Platycodon grandiflorum and Angelica gigas. The extract was diluted with a large volume of saline water and directly partitioned into dichloromethane to remove polar co-extractives in the aqueous phase. It was then purifined using optimized Florisil column chromatography. HPLC analysis conducted using an octadecylsilyl column allowed the successful separation of cyanazine from co-extractives of the samples, and the amount was sensitively quantified by ultraviolet absorption at 225 nm with no interference. The accuracy and precision of the proposed method were validated by conducting recovery experiments on each medicinal crop sample fortified with cyanazine at two concentration levels per crop in triplicate. Conclusions: The mean recoveries ranged from 91.2% to 105.3% for the four representative medicinal crops. The coefficients of variation were less than 10%, irrespective of the sample types and fortification levels. The limit of quantification of cyanazine was 0.02 mg/kg as verified by the recovery experiment. A confirmatory method was performed by liquid chromatography/MS using selected-ion monitoring technique to clearly identify the suspected residue.

Determination of Trace-Level Perchlorate by IC-MS/MS and Distribution in the Han River (IC-MS/MS를 이용한 수중의 과염소산이온 분석방법 최적화 및 한강수계내 분포조사)

  • Kim, Hyun-Hee;Han, Ihn-Sup;Jeong, Gwan-Jo;Park, Hyeon;Han, Sun-Hee;Cho, Wan-Seon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.349-356
    • /
    • 2010
  • Ion chromatography (IC) coupled with conductivity detector (CD) is a common system for the determination of perchlorate in water samples. Although the IC method with CD has been widely used for the determination of trace level perchlorate ion in water, sensitivity decreases dramatically as the complexity of the matrices increases. Here we proposed the application of ion chromatography coupled with mass spectrometry (IC-MS/MS) to significantly improve selectivity of perchlorate. The mean recovery of the method was 104.4 ${\pm}$ 5.7% and the relative standard deviation (RSD%) was 1.9 ${\pm}$ 1.3%. The alculated method detection limit (MDL) was 0.0207 ${\pm}$ 0.0099 ${\mu}g/L$. The concentrations of perchlorate were minimum <0.1 ${\mu}g/L$ and maximum 18.3 ${\mu}g/L$ in source water (Namhan, Bukhan and Han River). Hongreung showed higher concentrations ($1^{st}$-14.3 ${\mu}g/L$, $2^{st}$-18.3 ${\mu}g/L$) than the other places. And the concentrations of perchlorate were 0.18~0.34 ${\mu}g/L$ in the samples taken from the six water treatment plants and six intake stations in Seoul.