• Title/Summary/Keyword: Mass flowmeter

Search Result 24, Processing Time 0.02 seconds

Development of Small Size Coriolis Mass Flowmeter (소형 코리올리 질량 유량계의 개발)

  • Lim Ki-Won;Ji Jueng-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.497-504
    • /
    • 2006
  • A Coriolis mass flowmeter(CMF), which has U-Shaped unique measurins tube was developed fo. direct mass flow measurement. In order to convert the time difference between two measuring tubes motion into mass flowrate and flow quantity, a signal processing circuit, as a part of CMF, was also developed. The CMF was designed as the 15 mm nominal diameter of pipe connection and the 8 mm stainless steel(sus 316) pipe was used for measuring tube. To maximize the flow signal(time difference) from the measuring tubes, the natural frequency of measuring tube was adjusted as 220 Hz, which is same as the frequency of exciter. The maximum displacement at the end of the measuring tube was measured as 0.05 mm and the maximum time difference between two measuring tubes was observed as $20{\mu}s$, which was proper for discrimination and measuring range of CMF. The developed CMF was tested against the gravimetric flowmeter calibrator in the range of 3 kg/min and 30 kg/min. The results showed that the CMF has good linearity and repeatability in the tested flow range. Large size of CMF base on the current study experience will be developed.

An Experimental Study on the Influential Factors of Flow Measurement with Coriolis Mass Flowmeter (코리올리스 질량유량계의 유량측정에 영향을 미치는 인자에 관한 실험적 연구)

  • Lim, Ki-Won;Lee, Woan-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1699-1707
    • /
    • 2003
  • Coriolis mass flowmeter(CMF), which can measure the mass flow directly, is getting rapid attention for the industrial and custody transfer purpose. In order to study the characteristics and the applicability of CMF, it is tested with the national flow standard system. Two types of sensing tube, U-type and straight type, are employed in the test. Water, spindle oil and viscosity Standard Reference Material whose viscosities are 1, 20 and, 67 $\textrm{mm}^2$/s, respectively, are studied. It is shown that the linearity of CMF is getting deteriorated as the fluid viscosity increases, which is due to the zero drift and the relaxation time of the fluid. To test its applicability in the case of high pressured gas, it is calibrated using compressed air, It shows 1∼l.6 % deviations compared to the calibration results using water. It concludes that the fluid velocity in CMF should be lower than the sonic velocity. In addition, the effects of the vibration from the pipeline and pump on CMF as well as the long term stability are studied.

An Evaluation of the Accuracy of Mini-Wright Peak Flowmeters in Patients with Asthma and Chronic Obstructive Pulmonary Disease (천식 및 만성폐쇄성폐질환 환자에서 Mini-Wright Peak Flowmeter로 측정한 최대호기유속의 정확도)

  • Choi, Won-Il;Han, Seung-Beom;Jeon, Young-June
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.3
    • /
    • pp.310-319
    • /
    • 2001
  • Background : The peak flowmeter is very useful in monitoring of out-patients as well as those in emergency departments because of its convenience and simplicity with low cost. There have been many studies aimed at determining the accuracy and reproducibility of the peak flow meter in normal population. However, there is a paucity of reports regarding its accuracy in patients with chronic obstructive pulmonary disease(COPD) or asthma. The accuracy of the peak expiratory flow(PEF) measured with a mini-Wright peak flowmeter was assessed by a comparison with the results of a mass flow sensor. Methods : The PEF measurements were performed in 108 patients aged 19-82 years presenting with either a chronic obstructive lung disease or asthma before and after inhaling salbutamol. The PEF measurements from the mini-Wright flowmeter were compared with those obtained by the calibrated mass flow sensor. Results : The average of the readings taken by the mini-Wright meter were 37-39 l/min higher than those taken by the mass flow sensor. The average percentage error of the mini-Wright meter were higher, ranging less than 300 l/min. The mean of the differences between the values obtained using both instruments (the bias)$\pm$limits of agreement(${\pm}2$ SD) were $37.1{\pm}90\;l/min$ for the PEF(p<0.001). Conclusions : The mini-Wright peak flowmeter overestimated the flows in patients with COPD or asthma. It was also found that the accuracy of the mini-Wright peak flowmeter decreased in its mid to low range. The limits of agreement are wide and the difference between the two instruments is significant. Therefore, the measurements made between the two types of machines in patients with asthma or COPD cannot be used interchangeably.

  • PDF

Development of Oil Flowmeter and Preliminary Evaluation for Establishing National Leak Standard (국가 리크표준기용 오일유량계 개발 및 예비 평가)

  • Hong, S.S.;Song, H.W.;Choi, I.M.;Park, Y.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.295-300
    • /
    • 2012
  • We preliminarily evaluated the performance of a flowmeter by the measurement of the pressure of a ionization gauge and the produced throughput (Q) using a vacuum system and pistons with the radius of 10 mm and 20 mm. The throughput range with the later piston was from $1{\times}10^{-1}Pa{\cdot}L/s$ to $1.2Pa{\cdot}L/s$ and that with the former piston was from $5.3{\times}10^{-1}Pa{\cdot}L/s$ to $1.05Pa{\cdot}L/s$. In these ranges, both pistons showed good repeatability and linearity. The developed oil flowmeter as the leak standard will be used in the calibration of standard leak.

A Study on Liquified Petroleum Gas(LPG) Fuel Quantitative Method using Coriolis Mass Flowmeter (코리올리 질량유량계를 이용한 액화석유가스(LPG) 정량 측정 방법 연구)

  • Park, Tae-Seong;Seong, Sang-Rae;Yim, Eui-Soon;Lee, Joung-Min;Lee, Myung-Sig;Kang, Hyung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.109-122
    • /
    • 2018
  • Domestic LPG meters are being tested for LPG quantification in accordance with the "Measures Act". The LPG meter is re-tested every three years in accordance with the "Enforcement Decree of the Measures Act". The maximum permissible error within the test is within ${\pm}1.0%$, and the tolerance is within ${\pm}1.5%$. For the quantitative measurement of LPG, a hydrometer for LPG, a balance, and a pressure vessel are used. The volume of LPG varies in depending on the temperature and pressure. The current quantitative measurement method of LPG requires the measurement of temperature, pressure and density in order to determine the volume of LPG, respectively, and some equipments are needed accordingly. Coriolis mass flowmeter, on the other hand, measure the mass flow, density and temperature at the same time, and can be converted and calculated to the required values using a computer program, also it is widely applied in the industrial field. In this study, the volume of LPG was measured using a Coriolis mass flowmeter as a basic study of LPG quantitative measurement. In addition, it is shown that it is possible to apply for the LPG quantitative measurement using the Coriolis mass flowmeter by comparing it with the conventional LPG quantitative measurement method.

The Effects of Pressure and Specific Heat on the Performance of Thermal Mass Flowmeter (열량형 질량유량계에 대한 압력과 비열 영향)

  • Choi, Y. M,;Park, K. A.;Choi, H. M.;Lee, K. S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.109-113
    • /
    • 1999
  • Thermal mass flow meter (TMF) is used measuring the small mass flow rate of gases. Generally, flow rate measuring accuracy of TMF is $\pm2{\%}$ of full scale. TMF is manufactured for specified working pressure and specified working gas by customer. If it were applied for different working pressure and gases, flow rate measurement accuracy decreased dramatically. In this study, a TMF tested with three different gases and pressure range of 0.2 MPa to 1.0 MPa. Effect of specific heat cause to increase flow measurement error as much as ratio of specific heat compare with reference gas. Pressure change cause to increase flowrate measurement deviation about $-0.2{\%}$ as the working pressure decreased 0.1 MPa.

  • PDF

Calculations of Pressure Difference in Orifice Flowmeter using CFD (CFD를 이용한 오리피스 유량계의 차압계산)

  • Kim, Hong-Min;Kim, Kwang-Yong;Her, Jae-Young;Ha, Young-Chul
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.400-403
    • /
    • 2001
  • In this study, commercial CFD code, i.e, CFX-4.3 is used to analyze the flow field and to calculate pressure differences in an orifice flowmeter. Four numerical schemes and five turbulence models are tested. Hybrid scheme and Reynolds stress model show the best performance. Chosen scheme and turbulence model are applied to predict pressure differences through the orifice for the diameter ratios, 0.3, 0.5, and 0.7. And, the results are compared with the experimental data. The results show that the calculation error is inversely proportional to the diameter ratio, and is proportional to the mass flow rate.

  • PDF

A Platform Study of Fuel Consumption Measurements for an Excavator in Motion (동작중 굴삭기의 연료소모량 측정을 위한 측정 방법 기반 연구)

  • Kang, Ju Young;Choi, Jin Goo;Lee, Jeong Ho;Lee, Chung Geun;Ko, Sang Chul;Lee, Daeyup
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.35-40
    • /
    • 2017
  • Whereas fuel economy of a vehicle is measured using a chassis dynamometer, that of construction machinery such as an excavator shall be presumably measured using simulated work cycle. In order to measure fuel consumption under a simulated work cycle, a measurement methodology, while excavator operates in dynamic(transient) motion, needs to be examined and developed. In this work, three methods (gravimetry, ECU CAN signal and mass flow meter) are studied and compared. This work reveals that when ECU CAN signal is properly calibrated and evaluated, compared to gravimetry or mass flowmeter, it could be used to measure fuel consumption with accuracy and thus for approval of the fuel economy of construction machinery.

A Study of the Precise Flow Measurement using Coriolis flowmeter (코리올리 유량계를 이용한 정밀유량측정에 관한 연구)

  • Kim, In-Tae;Cho, Dae-Kee;Jeong, Min-Je;Lee, Jae-Won;Seo, Hyuk;Yu, Myoung-Jong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.61-64
    • /
    • 2008
  • For the performance evaluation of liquid mono-propellant thruster, Vacuum Hot-fire test is necessarily required. An accurate flow measurement is one of the key parameters to the successful T&E program. This paper describes the characteristics of the coriolis flowmeter, explains the cold-flow test using simulant propellant (DIW), and presents the test results. Finally, the cold test results have been verified in comparison with the hot-fire test data.

  • PDF

The Condensation Heat Transfer of Alternative Refrigerants for R-22 in Small Diameter Tubes (세관내 R-22 대체냉매의 응축열전달에 관한 연구)

  • Son, Chang-Hyo;Jeong, Jin-Ho;O, Jong-Taek;O, Hu-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.180-186
    • /
    • 2001
  • The condensation heat transfer coefficients of pure refrigerants R-22, R-134a, and a binary refrigerant mixture R-410A flowing in a small diameter tube were investigated. The experiment apparatus consists of a refrigerant loop and a water loop. The main components of the refrigerant loop consist of a variable-speed pump, a mass flowmeter, an evaporator, and a condenser(test section). The water loop consists of a variable-speed pump, an isothermal tank, and a flowmeter. The condenser is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. The test section consists of smooth, horizontal copper tube of 3.38mm outer diameter and 1.77mm inner diameter. The length of test section is 1220mm. The refrigerant mass fluxes varied from 450 to 1050kg/(㎡$.$s) and the average inlet and outlet qualities were 0.05 and 0.95, respectively. The main results were summarized as follows ; in the case of single-phase flow, the heat transfer coefficients increase with increasing mass flux. The heat transfer coefficient of R-410A was higher than that of R-22 and R-134a, and the heat transfer for small diameter tubes were about 20% to 27% higher than those predicted by Gnielinski. In the case of two-phase flow, the heat transfer coefficients also increase with increasing mass flux and quality. The condensation heat transfer coefficient of R-410A was slightly higher than that of R-22 and R-134a. Most of correlations proposed in the large diameter tube showed significant deviations with experimental data except for the ranges of low quality and low mass flux.