• 제목/요약/키워드: Mass flow rate ratio

검색결과 346건 처리시간 0.028초

열량형 질량 유량계의 성능 평가 (A Study on the Performance of Thermal Mass Flowmeter)

  • 최용문;박경암;윤복현;장석;최해만;이생희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.595-600
    • /
    • 2001
  • Thermal mass flow meter(TMF) and thermal mass flow controller(MFC) were used to measure and to control the mass flow rate of gases. TMF and MFC were designed for specified working pressure and gas. For the case of different working pressure and gases, the flow rate measurement accuracy decreased dramatically. In this study, a TMF and MFC was tested with three different gases and pressure range from 0.2 MPa up to 1.0 MPa. Effect of specific heat causes to increase flow measurement error as much as ratio of specific heat compared with reference gas. Changing of pressure causes to increase flow rate measurement error about -0.2% as the working pressure decreased 0.1 MPa. Response time of MFC was below 3.12 s for the case of increasing of flow rate. But the response time was increased up to 6.92 s for the case of decreasing of flow rate. When the solenoid valve was fully closed, a initial delay time of output of MFC was increased up to 1.36 s.

  • PDF

대향류형 보텍스 튜브의 노즐형상 변화011 따른 튜브 내부의 온도분포에 관한 실험적 연구 (An Experimental Study on the Characteristics of Temperature Distribution in Internal Space of a Tube for the Formal Change of Counterflow Type Vortex Tube)

  • 황승식
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.69-76
    • /
    • 2002
  • The aim of this study is to provide fundamental informations that make it possible to use a cool stream and a hot stream simultaneously. We changed the pressure of compressed air that flows into a tube, the inner diameter of orifice that a cold stream exits, and the mass flow rate ratio. And in each case, we measured the temperature of a cold stream and a hot stream in each exit of a tube. Also we measured the axial and the radial temperature distribution in internal spare of a tube. From the study, fellowing conclusive remarks 7an be made. First, As the number of nozzles increase, separation point move into the hot exit. Second, When we use guide vane type nozzle, the axial temperature distribution constant over the 0.75 of air mass flow rate radio. Third, When we use Spiral type nozzle, axial and radial temperature distribution in the inner space is higher than another nozzle. Fourth, Axial and radial temperature distribution in the inner space vortex-tube is determined by separation point. And separation point is moved by changing of air mass flow rate ratio. At last, A heating apparatus is possible far vortex-tube to use.

Effect of Flow Direction on Two-Phase Flow Distribution of Refrigerants at a T-Junction

  • Tae Sang-Jin;Cho Keum-Nam
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.717-727
    • /
    • 2006
  • The present study experimentally investigated the effect of flow direction and other flow parameters on two-phase flow distribution of refrigerants at a T-junction, and also suggested a prediction model for refrigerant in a T-junction by modifying previous model for air-water flow. R-22, R-134a, and R-410A were used as test refrigerants. As geometric parameters, the direction of the inlet or branch tube and the tube diameter ratio of branch to inlet tube were chosen. The measured data were compared with the values predicted by the models developed for air-water or steam-water mixture in the literature. We propose a modified model for application to the reduced T-junction and vertical tube orientation. Among the geometric parameters, the branch tube direction showed the biggest sensitivity to the mass flow rate ratio for the gas phase, while the inlet quality showed the biggest sensitivity to the mass flow rate ratio among the inlet flow parameters.

연소실내의 압력 변동에 따른 연료 분사구에서의 당량비 변동에 관한 수치해석 (Numerical Simulation on Equivalence Ratio Fluctuation at the Fuel Injection Hole with respect to Pressure Fluctuation in a Combustion Chamber)

  • 김현준;홍정구;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.27-35
    • /
    • 2006
  • It has been observed in experiments that combustion instability of low frequency (${\sim}$ 10Hz) results form the modulation of equivalence ratio at fuel injection hole when a pressure fluctuation propagates upwards along the channel of the burner under an unchoked fuel flow condition. In this study, a commercial program was used to determine how the fuel flow rate changed with respect to the pressure, velocity of the fuel flow and the mass fraction in a choked and an unchoked condition. The calculation focus on the upstream of the dump plane to know how the forced pressure with the fuel injection conditions affects the modulation of the equivalence ratio. Therefore, it is found that pressure fluctuation leads to oscillation of mass flow rate and then results in equivalence ratio modulation under the unchoked fuel flow condition.

  • PDF

친환경 프레온 냉매를 이용하는 단압축 단팽창 냉동시스템의 성능예측 (Performance Analysis of Two-stage Compression and Two-stage Expansion Refrigeration System using Freon Refrigerants)

  • 노건상;김종열
    • 수산해양교육연구
    • /
    • 제25권2호
    • /
    • pp.301-306
    • /
    • 2013
  • In this paper, cycle performance analysis of two-stage compression and two-stage expansion refrigeration system using alternative freon refrigerants is presented to offer the basic design data for the operating parameters of the system. Alternative freon refrigerant for freon refrigerant R22 were used as working fluids in this study. The operating parameters considered in this study included evaporation temperature, condensation temperature, subcooling degree, superheating degree, and mass flow rate ratio of inter-cooler. The main results were summarized as follows : The COP of two-stage compression and two-stage expansion refrigeration system increases with the increasing subcooling degree and mass flow rate ratio of inter-cooler, but decreases with the increasing evaporating temperature, condensing temperature and superheating degree. Therefore, subcooling degree, mass flow rate ratio of inter-cooler of two-stage compression and two-stage expansion refrigeration system using alternative freon refrigerants have an effect on COP of this system.

적분형 초음파 유량계를 이용한 MPI 엔진의 비정상상태 공연비 제어 (A/F Control of an MPI Engine on Transient Conditions with an Intergration type Ultrasonic Flow Meter)

  • 김중일;장준석;고상근
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.36-47
    • /
    • 1999
  • Three-way catalyst converter, cleaning up the exhaust gas contamination of SI engine, has the best efficiency when A/F ratio is near the stoichiometry . The feedback control using oxygen sensors in the exhaust manifold has limits caused by the system delays. So the accurate measurement of air flow rate to an engine is essential to control the fuel injection rate especially on transient condition like the rapid throttle opening and closing. To measure the rapid change of flow rates. the air flow meter for the engine requires quick response, flow reversal detection, and linearity . Tjhe proposed integration type air flow meter (IFM), composed of an ultrasonic flow meter with an integration circuit, has significantly improved the measurement accuracy of air mass inducted through the throttle body. The proposed control method estimated the air mass at the cylinder port using the measured air mass at the throttle . For the fuel dynamic model, the two constant fuel model is introduced . The control parameters from air and fuel dynamics are tuned to minimize the excursion of the air fuel ratio. As a result A/F ratio excursion can be reduced within 5% when throttle rapidly opens and closes at the various engine conditions.

  • PDF

오리피스 노즐 수직 2 상 유동의 물질전달 특성 (Mass Transfer Characteristics of Vertical Two-Phase Flows with Orifice Nozzle)

  • 김동준;양희천
    • 대한기계학회논문집B
    • /
    • 제39권10호
    • /
    • pp.817-824
    • /
    • 2015
  • 본 논문은 수직 오리피스 노즐의 유동 및 물질전달 특성에 대한 실험적 연구를 목적으로 한다. 구동유체 및 부유체의 유량, 용존산소 농도 그리고 소비 전력을 측정하였으며, 고속 카메라를 이용한 직접 촬영 기법으로 수직 혼합유동의 가시화 이미지를 획득하였다. 측정자료를 이용하여 질량비, 총괄 산소전달 계수 그리고 물질전달 성능계수를 도출하였다. 구동압력이 증가하면 질량비는 약간 감소하는 반면에, 산소전달 계수와 소비전력은 증가하였다. 구동압력이 증가하고 질량비가 작아지면, 기포의 미세화가 촉진되고 확산도가 증대되기 때문에 산소 전달율이 증가하였다.

액 수위와 유량이 세장비가 큰 냉동용 수직 리시버의 과냉에 미치는 영향 (Effect of Liquid Level and Mass Flow Rate on Subcooling of Vertical Refrigeration Receiver Having a Large Aspect Ratio)

  • 김내현
    • 설비공학논문집
    • /
    • 제29권7호
    • /
    • pp.385-389
    • /
    • 2017
  • Generally, refrigerant temperature out of the receiver is assumed to be saturated. This may be true for horizontal or vertical receivers having small aspect ratio. However, this assumption needs verification for vertical receiver having large aspect ratio. No study has reported information on this issue. The objective of this study was to determine the effect of liquid level and mass flow rate on liquid subcooling of a long vertical receiver using R-410A. During the test, inlet subcooling was maintained at $5^{\circ}C$ while saturation temperature was maintained at $10^{\circ}C$. Results showed that subcooling was maintained for the long vertical receiver. Subcooling preservation ratio (ratio of exit to inlet subcooling) was increased as mass flow rate or liquid level was increased. As a whole, 50 to 70% subcooling preservation was possible for the present receiver. Further investigations are needed to enhance information on this issue using receivers having different aspect ratios.

Numerical Analysis on the Discharge Characteristics of a Liquid Rocket Engine Injector Orifice

  • Cho, Won-Kook;Kim, Young-Mog
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권1호
    • /
    • pp.1-8
    • /
    • 2002
  • A numerical analysis was performed on the fluid flow in injector orifice of a liquid rocket engine. The present computational code was verified against the published data for turbulent flow in a pipe with a sudden expansion-contraction. Considered were the parameters for the flow analysis in an injector orifice: Reynolds number, ratio of mass flow rate of the injector orifice and inlet flow rate, and slant angle of the injector orifice. The discharge coefficient increased slightly as the Reynolds number increased. The slant angle of the injector changed critically the discharge coefficient. The discharge coefficient increased by 7% when the slant angle changed from $-30^{\circ}$ to $30^{\circ}$ The ratio of mass flow rate had relatively little impact on the discharge coefficient.

가변형 음속/초음속 이젝터 시스템에 관한 실험적 연구 (An Experimental Study of the Variable Sonic/supersonic Ejector Systems)

  • 이준희;김희동
    • 대한기계학회논문집B
    • /
    • 제29권5호
    • /
    • pp.554-560
    • /
    • 2005
  • A new method to improve the efficiency of a hydrogen fuel cell system was introduced by using variable sonic/supersonic ejectors. To obtain the variable area ratio of the nozzle throat to ejector throat which controls the mass flow rate of the suction flow, the ejectors used a movable cylinder inserted into a conventional ejector-diffuser system. Experiments were carried out to understand the flow characteristics inside the variable ejector system. The secondary mass flow rates of subsonic and supersonic ejectors were examined by varying the operating pressure ratio and area ratio. The results showed that the variable sonic/supersonic ejectors could control the recirculation ratio by changing the throat area ratio, and also showed that the recirculation ratio increased fur the variable sonic ejector and decreased for the variable supersonic ejector, as the throat area ratio increases.