• Title/Summary/Keyword: Mass culture conditions

Search Result 281, Processing Time 0.025 seconds

Optimum Condition for Mass Culture of Hairy Roots from Artemisia sylvatica MAX (국내 자생 그늘쑥 (Artemisia sylvatica MAX) 모상근의 대량배양을 위한 최적조건)

  • Shin, Sun-Hee;Yang, Deok-Cho
    • Journal of Plant Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.65-71
    • /
    • 2003
  • This research aims the production of anti-tumor substances through in vitro culture of hairy roots transformed by Agrobacterium rhizogenes in Artemisia sylvatica MAX and the effect of culture conditions on optimum growth of hairy roots. We investigated the optimum medium, pH, carbon source, sucrose, light, Fe and polyamine conditions of various lines of hairy roots (NK3, NK4, YX. NK3-10) induced from Artemisia sylvatica to increase the optimum growth of hairy roots. MS medium was the best for optimum growth of hairy root clone, NK3-S10. The optimum culture period was 4 weeks for NK3-S10. The optimum sucrose concentration was 3.5%. The optimum concentration of FeSO$_4$, spermine and spermidine was 0.1 mM, 10 mM and 100 mM, respectively.

Proteomic Comparison of Gibberella moniliformis in Limited-Nitrogen (Fumonisin-Inducing) and Excess-Nitrogen (Fumonisin-Repressing) Conditions

  • Choi, Yoon-E;Butchko, Robert A.E.;Shim, Won-Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.780-787
    • /
    • 2012
  • The maize pathogen Gibberella moniliformis produces fumonisins, a group of mycotoxins associated with several disorders in animals and humans, including cancer. The current focus of our research is to understand the regulatory mechanisms involved in fumonisin biosynthesis. In this study, we employed a proteomics approach to identify novel genes involved in the fumonisin biosynthesis under nitrogen stress. The combination of genome sequence, mutant strains, EST database, microarrays, and proteomics offers an opportunity to advance our understanding of this process. We investigated the response of the G. moniliformis proteome in limited nitrogen (N0, fumonisin-inducing) and excess nitrogen (N+, fumonisin-repressing) conditions by one- and two-dimensional electrophoresis. We selected 11 differentially expressed proteins, six from limited nitrogen conditions and five from excess nitrogen conditions, and determined the sequences by peptide mass fingerprinting and MS/MS spectrophotometry. Subsequently, we identified the EST sequences corresponding to the proteins and studied their expression profiles in different culture conditions. Through the comparative analysis of gene and protein expression data, we identified three candidate genes for functional analysis and our results provided valuable clues regarding the regulatory mechanisms of fumonisin biosynthesis.

Alteration of Media Composition and Light Conditions Change Morphology, Metabolic Profile, and Beauvericin Biosynthesis in Cordyceps bassiana Mycelium

  • Hyun, Sun-Hee;Lee, Seok-Young;Park, Shin Jung;Kim, Da Yeon;Chun, Young-Jin;Sung, Gi-Ho;Kim, Seong Hwan;Choi, Hyung-Kyoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2013
  • Metabolic alterations of Cordyceps bassiana mycelium were investigated under the following culture medium and light conditions: dextrose agar supplemented with 0.5% yeast extract (SDAY) medium with light (SL), SDAY medium without light (SD), nut medium without light (ND), and iron-supplemented SDAY medium without light (FD). The levels of asparagine, aspartic acid, glutamic acid, glutamine, histidine, lysine, ornithine, and proline were significantly higher under SD and SL conditions. The levels of most of the alcohols, saturated fatty acids, unsaturated fatty acids, fatty acid esters, sterols, and terpenes were higher under the ND condition than in the other conditions, but beauvericin was not detectable under the ND condition. The FD condition was favorable for the enhanced production of aminomalonic acid, malic acid, mannonic acid, and erythritol. Thus, the metabolic characteristics of C. bassiana can be manipulated by varying the cultivation conditions, rendering this fungus potentially favorable as a nutraceutical and medicinal resource.

Comparison of Biomass Production of Spirulina (Arthrospira) platensis in Outdoor Culture Conditions Using Different Media by Urea Addition (실외 배양 조건에서 요소를 첨가한 배지 성분에 따른 Spirulina (Arthrospira) platensis의 성장 비교)

  • Lee, Dae-Won;Affan, MD Abu;Lee, Hyeon-Yong;Ma, Chae Woo;Park, Heung-Sik;Kwon, Moon-Sang;Kang, Do-Hyung
    • Ocean and Polar Research
    • /
    • v.35 no.4
    • /
    • pp.407-414
    • /
    • 2013
  • One of the most important challenges facing the Spirulina mass cultivation industry is to find a way to reduce the high production costs involved in production. Although the most commercial medium (Zarrouk's medium) for Spirulina cultivation is too expensive to use, it contains higher amount of $NaHCO_3$ (16.80 g $L^{-1}$), trace metals and vitamin solutions. The purpose of this study was to increase the efficiency of Spirulina platensis biomass production by developing a low-cost culture medium at an isolated tropical island such as Chuuk State, Federated States of Micronesia (FSM). This study set out to formulate a lowcost medium for the culture of S. platensis, by substituting nutrients of Zarrouk's medium using fertilizer- grade urea and soil extract with a different concentration of carbon source under natural weather condition. In order to select a low-cost culture medium of S. platensis, 10 culture media were prepared with different concentrations of nitrogen (urea and $NaNO_3$) and $NaHCO_3$. The highest maximum specific growth rate (${\mu}max$) and mass production were 0.50 $day^{-1}$ and 1.05 g $L^{-1}$ in modified medium ($NaHCO_3$ 7.50 g $L^{-1}$, urea 2.00 g $L^{-1}$ without $NaNO_3$) among all the synthesized media. Protein (56.14%) and carbohydrate (16.21%) concentrations of the lyophilized standard samples were estimated with highest concentration of glutamic acid (14.93%). This study revealed that the use of a low concentration of urea and $NaHCO_3$ with soil extract was an affordable medium for natural mass cultivation in the FSM.

A Study of Ghetto Style expressed in Celebrity Fashion (셀러브리티 패션에서 표현된 게토 스타일 연구)

  • Park, Song-Ae
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.17 no.3
    • /
    • pp.197-206
    • /
    • 2015
  • Ghetto was originated from the concept of "Jewish Camp", the segregated Jewish residential area, and recently it refers to the black neighborhoods of the poor living conditions or slum. A region to form a unique culture distinguished from the adjacent area is also called as ghetto. The culture born in that region is called "ghetto culture", and from the cultural aspect it can mean a type of haven that allows the freedom and deviation of their own. In this study, the generating background and the characteristics of ghetto style especially to adolescents were examined, and celebrities' unique fashion styles that lead the public in the fashion diffusion process were analyzed. Through this, Ghetto culture was understood and the effects of the mass culture phenomena on fashion, symbolization, and an aesthetic value were examined. With this, it aims to help understand the effect of special local culture like "ghetto" on modern fashion and expand the design area. As a result of this study, the characteristics of ghetto style were as followings; 1. It is based on hiphop style; 2. The name brands are exposed conspicuously; 3. Caught eyes by unusually excessive decorations; 4. It expresses confidence and toughness through fashion beyond the resistance to the target who suppresses and humiliates themselves; 5. Ghetto culture is rapidly spread through media. To conclude, ghetto style is an expression of hope of the poor that they can gain wealth through impressing the public and drawing empathy just by their talent. Furthermore, ghetto style is an important cultural trend that has appeared as their wannabe and a powerful display method to express success.

  • PDF

Optimizing Culture Conditions to Maximize the Production of Laccase from Pholiota highlandensis (Pholiota highlandensis 유래 laccase 생산을 위한 배양조건의 최적화)

  • Choi, Hye-Ju;Moon, Soo-Jung;Jeon, Sung-Jong
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.673-679
    • /
    • 2015
  • The culture conditions needed to maximize the production of laccase from Pholiota highlandensis mycelia were investigated. Among the tested media for laccase production, Coriolus versicolor medium (CVM; 2% dextrose, 0.4% peptone, 0.6% yeast extract, 0.046% KH2PO4, 0.1% K2HPO4, 0.05% MgSO4·7H2O) showed the highest activity for the enzyme. Then, to optimize culture conditions for laccase activity, the influences of various carbon, nitrogen, phosphorus, and inorganic salt sources in CVM were investigated. The optimum culture medium was 2% fructose, 0.4% peptone with 0.6% yeast extract, 0.05% NaH2PO4, and 0.05% MgSO4·7H2O as carbon, nitrogen, phosphorus, and inorganic salt sources, respectively. Several aromatic compounds in the medium enhanced laccase activity to varying degrees. Guaiacol induced maximum laccase production, yielding 114.1 U/ml laccase activity after cultivation for 11 days at 25℃. The optimum pH and temperature for laccase production were 8.0 and 35℃, respectively. Native polyacrylamide-gel electrophoresis (PAGE) followed by laccase-activity staining with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as the substrate was performed to identify the presence of laccase under the optimum conditions studied. Zymogram analysis of the supernatant culture showed an enzymatic band with a molecular mass of about 90 kDa.

Morphological Characteristics of Pseudosclerotia of Grifola umbellata in In Vitro

  • Choi, Kyung-Dal;Lee, Kyung-Tae;Hur, Hyun;Hong, In-Pyo;Shim, Jae-Ouk;Lee, Youn-Su;Lee, Tae-Soo;Lee, Sang-Sun;Lee, Min-Woong
    • Mycobiology
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • The present study was carried out to investigate morphological characteristics of pseudosclerotia of Grifola umbellata formed by artificial cultures. Isolate G. umbellata DUM GUS-01 was obtained from sclerotium cultivated in field. The fungal isolate was cultured on PDYM broth, PDYMA(potato dextrose yeast malt agar) and oak sawdust media at $20^{\circ}C$ under the dark condition. G. umbellata DUM GUS-01 showed a volumetric increment of fungal lumps rather than mycelial growth. Particularly, G. umbellata DUM GUS-01 produced a large amount of melanin pigments in all culture treatments. The color of the fungal mass has been changed into grey gradually, and then formed melanized rind-like structure on its superficial part. The fungal structures which were covered with melanized rind-like layer were named as pseudosclerotia of G. umbellata. The pseudosclerotia of G. umbellata DUM GUS-01 formed a new white mycelial mass, which was swollen out of the melanized rind structure for its volumetric increment. When the pseudosclerotia were sectioned, their structure was discriminated from two structures such as a melanized rind-like structure layer formed by aggregation of aged mycelia and a white mycelial mass with high density. As results of scanning electron microscopic examination, the pseudosclerotia of G. umbellata DUM GUS-01 which were formed in in vitro conditions were similar to the sclerotia of G. umbellata cultivated in natural conditions except for the crystals formed in medula layer of natural sclerotia. Although size, solidity of rind structure and mycelial compactness of pseudosclerotia were more poor than those of natural sclerotia, the morphological structure and growth pattern of pseudosclerotia were very similar to those of natural sclerotia. Therefore, it is probable to induce pseudosclerotia to sclerotia of G. umbellata in in vitro conditions. Consequently, it seems that the induced pseudosclerotia can be used as inoculum sources to substitute natural sclerotia in field cultivation.

Development of mass rearing technique of Tyrophnn putrescentiae (Acari: Acaridae) found in house dust (집먼지에 서식하는 긴털가루진드기(진드기목: 가루진드기과)의 대량 사육방법 개발)

  • 이한일;이인용
    • Parasites, Hosts and Diseases
    • /
    • v.35 no.3
    • /
    • pp.149-154
    • /
    • 1997
  • A storage mite, Tyrophcgus putrescentiae, is recently known to be widely distributed in Korea, being commonly found in house dust, and may, therefore, be allergenically important. The purpose of this study was to develop mass rearing techniques for supplying a large quantity of allergens. The laboratory mouse food powder gave the highest yield, showing 1,251.5-fold increase in number after 10 weeks, and the mixed powder of laboratory mouse food and yeast (1 : 1) also gave same level of the production (1.203 1-fold increase in week 10). Several different combinations of temperature and relative humidity conditions were compared, and the maximum propagation was obtained at $25^{\circ}C$ and 64% RH, showing 960-fold increase in number. When the same amount of culture media was used the size of the culture container did not significantly influence the quantitative yield of T. putrescentice mites.

  • PDF

Mass Production of Gain-of-Function Mutants of Hair Roots in Ginseng (기능획득 돌연변이 인삼 모상근의 대량생산)

  • Ko, Suk-Min;In, Dong-Soo;Chung, Hwa-Jee;Choi, Dong-Woog;Liu, Jang-Ryol
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.285-291
    • /
    • 2007
  • This study describes conditions for the mass production of activation-tagged mutant hairy root lines of ginseng by cocultivation with Agrobacterium rhizogenes. Because it is not currently possible to produce progeny from transgenic ginseng, a loss-of-function approach for functional genomics cannot be appliable to this species. A gain-of-function approach is alternatively the choice and hairy root production by cocultivation of A. rhizogenes would be most practical to obtain a large number of mutants. Various sources of explants were subjected to genetic transformation with various strains of A. rhizogenes harboring the activation-tagging vector pKH01 to determine optimum conditions for the highest frequency of hairy root formation on explants. Petiole explants cocultivated with A. rhizogenes R1000 produced hairy roots at a frequency of 85.9% after 4 weeks of culture. Conditions for maximum growth or branching rate of hairy roots were also investigated by using various culture media. Petiole explants cultured on half strength Schenk and Hildebrandt medium produced vigorously growing branched roots at a rate of 2.6 after 4 weeks of culture. A total of 1,989 lines of hairy root mutants were established in this study. These hairy root lines will be useful to determine functions of genes for biosynthesis of ginsenosides.

Cultivation conditions for mass production of detoxifying bacterium Pseudomonas sp. HC1 of tolaasin produced by Pseudomonas tolaasii (버섯 세균성갈색무늬병원균(Pseudomonas tolaasii)의 독소(tolaasin) 저해균 Pseudomonas sp. HC1의 대량배양을 위한 최적 배양조건)

  • Lee, Chan-Jung;Yoo, Young-Mi;Han, Ju-Yeon;Jhune, Chang-Sung;Cheong, Jong-Chun;Moon, Ji-Won;Kong, Won-Sik;Suh, Jang-Sun;Han, Hye-Su;Cha, Jae-Soon
    • Journal of Mushroom
    • /
    • v.12 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • Several bacteria are known as the causal agents of diseases of the cultivated button mushroom(Agaricus bisporus) and oyster mushroom(Pleurotus ostreatus). Pseudomonas tolaasii is the causal agent of brown blotch disease of commercial mushrooms. Pseudomonas sp. HC1 is a potent biological control agent to control brown blotch disease caused by Pseudomonas tolaasii. This can markedly reduce the level of extracellular toxins (i.e., tolaasins) produced by Pseudomonas tolaasii, the most destructive pathogen of cultivated mushrooms. To define the optimum conditions for the mass production of the Pseudomonas sp. HC1, we have investigated optimum culture conditions and effects of various nutrient source on the bacterial growth. The optimum initial pH and temperature were determined as pH 5.0 and $20^{\circ}C$, respectively. The optimal culture medium for the growth of tolaasin inhibitor bacterium was determined as follows: 0.9% dextrin, 1.5% yest extract, 0.5% $(NH_4)_2HPO_4$, 4mM $FeCl_3$, and 3.0% cysteine.