• Title/Summary/Keyword: Mass balance method

Search Result 237, Processing Time 0.026 seconds

Analysis of CO2 Emission Depending on Hydrogen Production Methods in Korea (국내 수소 생산에 따른 CO2 발생량 분석)

  • Han, Ja-Ryoung;Park, Jinmo;Kim, Yohan;Lee, Young Chul;Kim, Hyoung Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • Because of environmental pollution problem, interests in hydrogen energy has been concentrating sharply. Especially in Korea, the market related with fuel cell vehicles and hydrogen refueling stations is increasing actively under the government-led. However, the actual contributions to environmental improvement effect of hydrogen energy is required to be evaluated with representing reality. In this sense, lots of conventional analyzing tools have some limitations to adapt in Korea's situation directly. It is caused by the differences of raw energy market between the US and Korea. That is, most of analytic tools are developed by representing energy market of the US, where can produce variety of raw feed energy sources. Therefore, in this paper, we propose mass balance based numerical analyzing method, which is suitable for the actual hydrogen production process in Korea for exact evaluation of $CO_2$ emission amount in this country. Using proposed method, we has demonstrated reformed hydrogen from natural gas, LPG and naphtha, electrolysis-based hydrogen, and COG-based hydrogen. Furthermore, with the comparison of GREET program analysis results, robustness of numerical analysis method is demonstrated.

Behavior of perfluorinated compounds in advanced water treatment plant (고도 정수처리장에서의 과불화합물 거동)

  • Lim, Chaeseung;Kim, Hyungjoon;Han, Gaehee;Kim, Ho;Hwang, Yunbin;Kim, Keugtae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.5
    • /
    • pp.323-334
    • /
    • 2020
  • Adsorption by granule activated carbon(GAC) is recognized as an efficient method for the removal of perfluorinated compounds(PFCs) in water, while the poor regeneration and exchange cycles of granule active carbon make it difficult to sustain adsorption capacity for PFCs. In this study, the behavior of PFCs in the effluent of wastewater treatment plant (S), the raw water and the effluents of drinking water treatment plants (M1 and M2) located in Nakdong river waegwan watershed was monitored. Optimal regeneration and exchange cycles was also investigated in drinking water treatment plants and lab-scale adsorption tower for stable PFCs removal. The mean effluent concentration of PFCs was 0.044 0.04 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.037 0.011 PFOA g/L, for S wastewater treatment plant, 0.023 0.073 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.013 0.008 PFOA g/L for M1 drinking water treatment plant and 0.023 0.073 PFHxS g/L, 0.000 0.01 PFOS g/L, 0.011 0.009 PFOA g/L for M2 drinking water treatment plant. The adsorption breakthrough behaviors of PFCs in GAC of drinking water treatment plant and lab-scale adsorption tower indicated that reactivating carbon 3 times per year suggested to achieve and maintain good removal of PFASs. Considering the results of mass balance, the adsorption amount of PFCs was improved by using GAC with high-specific surface area (2,500㎡/g), so that the regeneration cycle might be increased from 4 months to 10 months even if powdered activated carbon(PAC) could be alternatives. This study provides useful insights into the removal of PFCs in drinking water treatment plant.

Effects of Skill Level and Feet Width on Kinematic and Kinetic Variables during Jump Rope Single Under

  • Jang, Kyeong Hui;Son, Min Ji;Kim, Dae Young;Lee, Myeoung Gon;Kim, You Kyung;Kim, Jin Hee;Youm, Chang Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.99-108
    • /
    • 2017
  • Objective: The purpose of this study was to analyze the effects of skill level and width between feet on kinematic and kinetic variables during jump rope single under with both feet. Method: Fifteen subjects in the skilled group (age: $10.85{\pm}0.40yrs$, height: $142.13{\pm}5.41cm$, weight: $36.97{\pm}6.65kg$) and 15 subjects in the unskilled group (age: $10.85{\pm}0.40yrs$, height: $143.31{\pm}5.54cm$, weight: $40.81{\pm}10.39kg$) participated in this study. Results: Participants in the skilled group minimized the anteroposterior displacement of their center of mass by modifying the width between their feet and decreased the range of motion (ROM) of their trunk in the sagittal plane. The preferred width during the jump rope decreased by 5.61~6.11 cm (32~37%) in comparison to width during static standing. The induced width was increased by 16.44~16.67 cm (82~85%), regardless of skill level. The kinematic variables of the left and right legs of members of the unskilled group were significantly different from those of members in the skilled group regarding the ROM of the hip, knee, and ankle joint. Otherwise, the members of the skilled group were consistent in terms of the kinematic variables of the right and left legs. Conclusion: The preferred width between feet during the jump rope was found to be beneficial for maintaining dynamic stability. The unskilled group exhibited asymmetry in left and right motion within the ranges of motion of the ankle, knee, and hip joints, regardless of the width. Therefore, long-term accurate jump rope motions will contribute to an improvement in the left and right imbalances of the entire body.

One-dimensional Hydraulic Modeling of Open Channel Flow Using the Riemann Approximate Solver I : Model Development (Riemann 해법을 이용한 1차원 개수로 수리해석Ⅰ: 모형 개발)

  • Kim, Ji-Sung;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.8
    • /
    • pp.761-772
    • /
    • 2008
  • The object of this study is to develop the model that solves the numerically difficult problems in hydraulic engineering and to demonstrate the applicability of this model by means of various test examples, such as, verification in the gradually varied unsteady condition, three steady flow problems with the change of bottom slope with exact solution, and frictional bed with analytical solution. The governing equation of this model is the integral form of the Saint-Venant equation satisfying the conservation laws, and finite volume method with the Riemann solver is used. The evaluation of the mass and momentum flux with the HLL Riemann approximate solver is executed. MUSCL-Hancock scheme is used to achieve the second order accuracy in space and time. This study introduce the new and simple technique to discretize the source terms of gravity and hydrostatic pressure force due to longitudinal width variation for the balance of quantity between nonlinear flux and source terms. The results show that the developed model's implementation is accurate, robust and highly stable in various flow conditions with source terms, and this model is reliable for one-dimensional applications in hydraulic engineering.

The SBAG assemblage in the Dueumri Formation mear the Chunyang granite : Algebraic analysis (춘양 화강암체 주변 두음리층에 산출하는 십자석-흑운모-홍주석-석류석 광물조합: 대수학적 분석)

  • 양판석;조문섭
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.49-58
    • /
    • 1995
  • Staurolite-biotite-andalusite-garnet (SBAG) assemblage and its sub-assemblages (SBA and SBG) commonly occur in the Dueumri Formation near the Chunyang granite, belonging to andalusite and sillimanite zones. The occurrence of the SBAG mineral assemblage is unusual because it is univariant in the $K_2O-FeO-MgO-Al_2O_3-SiO_2-H_2O$ (KFMASH) model system. We used projection and singular value decomposition (SVD) methods to investigate the equilibrium relationship between SBAG and its sub-assemblage. The SVD modelling of single specimen containing the SBAG assemblage suggests no reaction relationship with respect to mass-balance. Thus, the SBAG assemblages are stabilized by non-KFMASH component. On the other hand, the AFM-Mn projection suggests a reaction relationship between SBAG and its sub-assemblage because they intersect each other in this composition space. The SVD modelling, however, suggests no reaction relationship between these assemblages. Thus, the SBAG assemblages are likely to be stabilized by the variation in bulk-rock composition and/or 1.1~2,. The stable occurrence of staurolite in the sillimanite zone is compatible with pressure estimates from the garnet-plagioclase-biotite-muscovite geobarometer.

  • PDF

AN EXPERIMENTAL STUDY ON THE MICROHARDNESS OF DENTAL AMALGAMS (치과용 아말감의 미세경도에 관한 실험적연구)

  • Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.8 no.1
    • /
    • pp.89-96
    • /
    • 1982
  • The purpose of this study is to identify the phases of four different types, low-copper lathe cut (Type II, class 1) and spherical (Type II, class 2) amalgam alloys which are made by Caulk company and high copper Dispersalloy (Type II, class 3) made by Johnson & Johnson and Tytin (Type I, class 2) made by S.S. White and to determine the Vickers hardness number on the individual phase and four different types of dental amalgam. After each amalgam alloy and Hg measured exactly by the balance was triturated by the mechanical amalgamator (De Trey), the triturated mass was inserted into the cylindrical metal mold which was 4 mm in diameter and 12mm in height and was pressed by the Instron Universal Testing machine (Model 1125) at the speed of 1mm/minute with 143$kg/cm^2$ according to the A.D.A. Specification No. 1. The Specimen removed from the mold, mounted and stored in the room temperature for 7 days. The speciman was polished with the emery paper from #220 to #1200 and finally on the polishing cloth with 0.3 and 0.05 um $Al_2O_3$ powder suspended in water. And then each specimen was etched by Allan's method and washed with Sodium Bisulfinite for 30 seconds. Finally differentiation and metallography on each phase were obtained by using metallographical microscope (Versamet, Union) and microhardness was obtained by using microhardness tester (MVH-2, Torsee). The results were as follows: 1. In the low-copper amalgam, the ${\gamma}$, ${\gamma}_1$ and ${\gamma}_2$ phase were observed and in the high-copper amalgam, the ${\gamma}$, ${\gamma}_1$. ${\epsilon}$ and ${\eta}$ phases were observed but ${\gamma}_2$ phase was not observed. 2. Among the microhardness of each amalgam phase measured under pressing a vickers diamond indenter with 2.0gm load for 30 seconds, e phase has the highest V.H.N (314 ${\pm}$ 20), and in low-copper amalgam 12 phase has the lowest V.H.N. (29${\pm}$1) and ${\eta}$ phase which was observed in high-copper amalgam has 230${\pm}$13 V.H.N and this phase is considerd to contribute to strengthen the handness in amalgam. 3. The V.H.N. measured under pressing a Vickers diamond indenter with 300.0gm load for 30 seconds in low-copper amalgam was lower than that of high-copper amalgam.

  • PDF

Application of a Numerical Model for the Prediction of Vertical Profiles of Electron Acceptors Based on Degradation of Organic Matter in Benthic Sediments (퇴적 유기물 분해과정에 따른 물질 거동 변화 예측을 위한 수치모델 적용)

  • Choi, Jung-Hyun;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.151-157
    • /
    • 2005
  • A one-dimensional numerical model was developed to simulate vertical profiles of electron acceptors and their reduced species in benthic sediments. The model accounted for microbial degradation of organic matter and subsequent chemical reactions of interest using stoichiometric relationships. Depending on the dominant electron acceptors utilized by microorganisms, the benthic sediments were assumed to be vertically subdivided into six zones: (1) aerobic respiration, (2) denitrification, (3) manganese reduction, (4) iron reduction, (5) sulfate reduction, and (6) methanogenesis. The utilizations of electron acceptors in the biologically mediated oxidation of organic matter were represented by Monod-type expression. The mass balance equations formulated for the reactive transport of organic matter, electron acceptors, and their corresponding reduced species in the sediments were solved utilizing an iterative multistep numerical method. The ability of model to simulate a freshwater sediments system was tested by comparing simulation results against published data obtained from lake sediments. The simulation results reasonably agreed with field measurements for most species, except for ammonia. This result showed that the C/N ratio (106/16) in the sediments is lower than what the Redfield formula prescribes. Since accurate estimates of vertical profiles of electron acceptors and their reduced species are important to determine the mobility and bioavailability of trace metals in the sediments, the model has potential application to assess the stability of selected trace metals in the sediments.

Effect of an Improving Agent for the Intestinal Function, a Poly Herbal Formulation (KTG075) on Secretion of Mucus (장기능개선제(KTG075)의 대장관내 점액(Mucus)분비에 미치는 영향)

  • Baik, Soon-Ok;Lee, You-Hui;Kim, Hyun-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.3
    • /
    • pp.356-360
    • /
    • 2005
  • The maintenance of intestinal health is complex and relies on a delicate balance between the diet, the normal microflora and mucosa, including the digestive epithelium and overlying mucus layer. The colorectal mucosa is protected by a visco-elastic mucus gel formed by high molecular mass glycoproteins referred to as mucins. Abnormality of mucin have been identified with colorectal disease. Constipation increases with age, and is more common among women than men in all age groups, e.g. 10% of men and 20% of women in the USA. The aim of the present study was conducted to investigate that the effects of formulation KTG075 from edible plants on intestinal function on mucus secretion, were examined by loperamide-induced constipation method using Sprague Dawley male rats. Epithelial cells of colonic crypt contained more mucus in the KTG075 group compared with those of the control group and the thickness of the mucus layer stained with alcian blue was significantly thicker in KTG075 treated rats compared with in control rats. Mucus production of epithelial cells of crypt and mucus contents at fecal and mucosa surfaces were reduced by loperamide-induced constipation. These results indicates that a poly herbal formulation KTG075 accelerates evacuation and activated intestines.

Research on Development of Turbo-generator with Partial Admission Nozzle for Supercritical CO2 Power Generation (부분 유입 노즐을 적용한 초임계 이산화탄소 발전용 초고속 터보발전기 개발 연구)

  • Cho, Junhyun;Shin, Hyung-ki;Kang, Young-Seok;Kim, Byunghui;Lee, Gilbong;Baik, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.293-301
    • /
    • 2017
  • A Sub-kWe small-scale experimental test loop was manufactured to investigate characteristics of the supercritical carbon dioxide power cycle. A high-speed turbo-generator was also designed and manufactured. The designed rotational speed of this turbo-generator was 200,000 rpm. Because of the low expansion ratio through the turbine and low mass flowrate, the rotational speed of the turbo-generator was high. Therefore, it was difficult to select the rotating parts and design the turbine wheel, axial force balance and rotor dynamics in the lab-scale experimental test loop. Using only one channel of the nozzle, the partial admission method was adapted to reduce the rotational speed of the rotor. This was the world's first approach to the supercritical carbon dioxide turbo-generator. A cold-run test using nitrogen gas under an atmospheric condition was conducted to observe the effect of the partial admission nozzle on the rotor dynamics. The vibration level of the rotor was obtained using a gap sensor, and the results showed that the effect of the partial admission nozzle on the rotor dynamics was allowable.

Characteristics of Coal Slurry Gasification under Partial Slagging Operating Condition (부분 용융 운전 조건에서 석탄슬러리 가스화 운전 특성)

  • Lee, Jin Wook;Chung, Seok Woo;Lee, Seung Jong;Jung, Woohyun;Byun, Yong Soo;Hwang, Sang Yeon;Jeon, Dong Hwan;Ryu, Sang Oh;Lee, Ji Eun;Jeong, Ki Jin;Kim, Jin Ho;Yun, Yongseung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.657-666
    • /
    • 2014
  • Coal gasification technology is considered as next generation clean coal technology even though it uses coal as fuel which releases huge amount of greenhouse gas because it has many advantages for carbon capture. Coal or pet-coke slurry gasification is very attractive technology at present and in the future because of its low construction cost and flexibility of slurry feeding system in spite of lower efficiency compared to dry feeding technology. In this study, we carried out gasification experiment using bituminous coal slurry sample by integrating coal slurry feeding facility and slurry burner into existing dry feeding compact gasifier. Especially, our experiment was conducted under fairly lower operation temperature than that of existing entrained-bed gasifier, resulting in partial slagging operation mode in which only part of ash was converted to slag and the rest of ash was released as fly ash. Carbon conversion rate was calculated from data analysis of collected slag and ash, and then cold gas efficiency, which is the most important indicator of gasifier performance, was estimated by carbon mass balance method. Fairly high performance considering pilot-scale experiment, 98.5% of carbon conversion and 60.4% of cold gas efficiency, was achieved. In addition, soundness of experimental result was verified from the comparison with chemical equilibrium composition and energy balance calculations.