• 제목/요약/키워드: Mass Transfer Reactor

검색결과 148건 처리시간 0.023초

고부하 유기성 폐수처리를 위한 분리막 결합형 순산소 고효율 포기장치의 총괄 산소전달효율 평가 (Comparison of Overall Oxygen Transfer Coefficient in the Membrane Coupled High Performance Reactor for a High Organic Loading Wastewater Treatment)

  • 강범희;임경호;이상민
    • 한국물환경학회지
    • /
    • 제26권1호
    • /
    • pp.81-88
    • /
    • 2010
  • This study was conducted to find the capability of comparison of overall oxygen transfer coefficient in the membrane coupled high performance reactor (MPHCR) in treating high organic loading wastewater. Effluent quality had been analyzed while the influent organic loading rate was changed from 2 to $7kg\;COD/m^3{\cdot}day$. The oxygen transfer coefficients had been investigated using two-phase nozzle for operating variables which were internal circulation flowrate (5~8 L/min), air flow rate (0.0125~0.2 L/min), liquid temperature ($10{\sim}20^{\circ}C$), and pure-oxygen flow rate (0.0125~0.2 L/min). The overall oxygen transfer coefficient was increased with flowrate of internal circulation and air and high temperature. Especially, internal circulation flow rate showed distinct effect on overall oxygen transfer coefficient due to an increase of gas holdup and air-liquid contract area by two-phase nozzle. In the high range of organic loading rate from 4 to $7kg\;COD/m^3{\cdot}day$, the removable efficiency of COD was 91%. Conventional activated sludge process usually treat organic loading from 0.32 to $0.64kg\;COD/m^3{\cdot}day$ however, the MPHCR can treat 10 to 20 times higher if it would be compared to the conventional activated sludge process. Foaming problem often happened and caused biomass wash out of the reactor, therefore, the foaming should be controlled for the enhanced operation.

휴대용 연료전지를 위한 부탄 자열개질에 관한 연구 (Study on n-Butane Autothermal Reforming for Portable Fuel Cell)

  • 배규종;강인용;임성광;배중면;김주용;이찬호
    • 대한기계학회논문집B
    • /
    • 제30권11호
    • /
    • pp.1123-1130
    • /
    • 2006
  • This study discusses about research efforts of hydrogen generation from hydrocarbon(e.g., diesel, gasoline, natural gas, and LPG), especially, butane reforming by using Autothermal Reforming Reaction (ATR) technology. Several catalysts were selected for butane ATR. Thermodynamic reactor conditions (temperature, $O_2$/C, S/C) are varied and reforming characteristics of 2 catalysts (Pt and Rh on ceramic supports) and 1 commercial catalyst (FCR-HC35) have been examined. To understand reaction behaviors in an ATR reactor comprehensively, temperature profiles of reactor were observed. By mass transfer limitation, fuel conversion decreases when GHSV increases. Significant temperature variation along the reactor was observed and it was mainly due reaction kinetics difference between exothermic oxidation and endothermic reforming reaction.

Semiempirical model for wet scrubbing of bubble rising in liquid pool of sodium-cooled fast reactor

  • Pradeep, Arjun;Sharma, Anil Kumar
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.849-853
    • /
    • 2018
  • Mechanistic calculations for wet scrubbing of aerosol/vapor from gas bubble rising in liquid pool are essential to safety of sodium-cooled fast reactor. Hence, scrubbing of volatile fission product from mixed gas bubble rising in sodium pool is presented in this study. To understand this phenomenon, a theoretical model has been setup based on classical theories of aerosol/vapor removal from bubble rising through liquid pools. The model simulates pool scrubbing of sodium iodide aerosol and cesium vapor from a rising mixed gas bubble containing xenon as the inert species. The scrubbing of aerosol and vapor are modeled based on deposition mechanisms and Fick's law of diffusion, respectively. Studies were performed to determine the effect of various key parameters on wet scrubbing. It is observed that for higher vapor diffusion coefficient in gas bubble, the scrubbing efficiency is higher. For aerosols, the cut-off size above which the scrubbing efficiency becomes significant was also determined. The study evaluates the retention capability of liquid sodium used in sodium-cooled fast reactor for its safe operation.

1차원 기체-고체 반응기 모델의 로터리킬른 환원로 적용 (Simplified 1-Dimensional Model of Gas-Solid Reactor : Adapting to Coal Reduction Rotary Kiln)

  • 한택진;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.75-78
    • /
    • 2012
  • Rotary kiln furnace is one of the most widely used reactors in industrial field. In this paper, 0-dimensional heat and mass balance for direct coal flame rotary kiln was performed preferentially, then a simplified 1-dimensional model was developed based on 0-dimensional analysis data to proceed additional thermal analysis. Compared the results with the currently operating rotary kiln data to validate 1-dimensional model. Through this procedure, it can help to derive fundamental idea for design and operation of rotary kiln.

  • PDF

CFD를 이용한 패들교반속도에 따른 속도경사 및 총물질전달시간 산정 (Evaluation of Local Velocity Gradient and Total Mass transfer Time at Various Rotating Velocity by Using Computational Fluid Dynamics)

  • 전항배;전동걸;홍기원;한홍식;박병창
    • 한국물환경학회지
    • /
    • 제30권2호
    • /
    • pp.166-174
    • /
    • 2014
  • Velocity gradient, G, a measure of the average velocity gradient in the fluid has been applied for complete mixing of chemicals in mechanical mixing devices. G values were calculated by the power input transferred to fluid in turbulent and transient range. Chemical reactions occur so fast that total mass transfer time required for even distribution of the chemicals determine the overall reaction time. The total mass transfer time is composed of the time for complete mixing through the reactor and for diffusion of the chemicals into the eddy. Complete mixing time was calculated by CFD (computer fluid dynamics) and evaluated by tracer tests in 2 liter jars at different rotating speeds. Turbulent range, Reynolds number above 10,000 in regular 2 liter jars occurred at revolution speed above 100 rpm (revolution per minute), while laminar range occurred at revolution speed below 10 rpm. A typical range of rotating speed used in jar tests for water and wastewater treatment was between 10 and 300 rpm, which covered both transient and turbulent range. G values supplied from a commercial jar test apparatus showed big difference from those calculated with power number specially in turbulent range. Diffusion time through eddy decreased 1.5 power-law of rotating speed. Complete mixing time determined by pumping number decreased increases in rotating speed. Total mass transfer time, finally, decreases as rotating speed increases, and it becomes 1 sec at rotating speed of 1,000 rpm. Complete mixing times evaluated from tracer tests showed higher than those calculated by power number at higher rotating speed. Complete mixing times, however, calculated by CFD showed similar to those of experimentally evaluated ones.

Analysis of the flow distribution and mixing characteristics in the reactor pressure vessel

  • Tong, L.L.;Hou, L.Q.;Cao, X.W.
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.93-102
    • /
    • 2021
  • The analysis of the fluid flow characteristics in reactor pressure vessel is an important part of the hydraulic design of nuclear power plant, which is related to the structure design of reactor internals, the flow distribution at core inlet and the safety of nuclear power plant. The flow distribution and mixing characteristics in the pressurized reactor vessel for the 1000MWe advanced pressurized water reactor is analyzed by using Computational Fluid Dynamics (CFD) method in this study. The geometry model of the full-scaled reactor vessel is built, which includes the cold and hot legs, downcomer, lower plenum, core, upper plenum, top plenum, and is verified with some parameters in DCD. Under normal condition, it is found that the flow skirt, core plate holes and outlet pipe cause pressure loss. The maximum and minimum flow coefficient is 1.028 and 0.961 respectively, and the standard deviation is 0.019. Compared with other reactor type, it shows relatively uniform of the flow distribution at the core inlet. The coolant mixing coefficient is investigated with adding additional variables, showing that mass transfer of coolant occurs near the interface. The coolant mainly distributes in the 90° area of the corresponding core inlet, and mixes at the interface with the coolant from the adjacent cold leg. 0.1% of corresponding coolant is still distributed at the inlet of the outer-ring components, indicating wide range of mixing coefficient distribution.

Assessment of Mass Fraction and Melting Temperature for the Application of Limestone Concrete and Siliceous Concrete to Nuclear Reactor Basemat Considering Molten Coree-Concrete Interaction

  • Lee, Hojae;Cho, Jae-Leon;Yoon, Eui-Sik;Cho, Myungsug;Kim, Do-Gyeum
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.448-456
    • /
    • 2016
  • Severe accident scenarios in nuclear reactors, such as nuclear meltdown, reveal that an extremely hot molten core may fall into the nuclear reactor cavity and seriously affect the safety of the nuclear containment vessel due to the chain reaction caused by the reaction between the molten core and concrete. This paper reports on research focused on the type and amount of vapor produced during the reaction between a high-temperature molten core and concrete, as well as on the erosion rate of concrete and the heat transfer characteristics at its vicinity. This study identifies themass fraction and melting temperature as the most influential properties of concrete necessary for a safety analysis conducted in relation to the thermal interaction between the molten core and the basemat concrete. The types of concrete that are actually used in nuclear reactor cavities were investigated. The $H_2O$ content in concrete required for the computation of the relative amount of gases generated by the chemical reaction of the vapor, the quantity of $CO_2$ necessary for computing the cooling speed of the molten core, and the melting temperature of concrete are evaluated experimentally for the molten core-concrete interaction analysis.

고온 태양열 화학 반응기에서의 메탄-수증기 개질반응 시뮬레이션 (Methane-Steam Reforming Simulation for a High Temperature Solar Chemical Reactor)

  • 고요한;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제29권1호
    • /
    • pp.44-49
    • /
    • 2009
  • Steam reforming of methane in the high temperature solar chemical reactor bas advantage in its heating method. Using concentrated solar energy as a heating source of the reforming reaction can reduce the $CO_2$ emission by 20% compared to hydrocarbon fuel. In this paper, the simulation result of methane-steam reforming on a high temperature solar chemical reactor(SCR) using Fluent 6.3.26 is presented. The high temperature SCR is designed for the Inha Dish-1, a Dish type solar concentrator installed in Songdo city. Basic SCR performance factors are referred to the former researches of the same laboratory. Inside the SCR porous metal is used for a receiver/reactor. The porous metal is carved like a dome shape on the incident side to increase the heat transfer. Also, ring-disc set of baffle is inserted in the porous metal region to increase the path length. Numerical and physical models are also used from the former researches. Methane and steam is mixed with the same mole fraction and injected into the SCR. The simulation is performed for a various inlet mass flow rate of the methane-steam mixture gas. The result shows that the average reactor temperature and the conversion rate change appreciably by the inlet mass flow rate of 0.0005 kg/s.

3상 Slurry Bubble Column Reactor에서 기체유속에 따른 고체입자의 거동에 대한 연구 (Study on Effect of gas superficial velocity on particle behavior in three phased Slurry Bubble Column Reactor)

  • 양정훈;양정일;이호태;김학주;천동현;정헌
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.876-879
    • /
    • 2009
  • Fischer-Tropsch 합성 반응과 같은 slurry bubble column reactor에서는 반응 속도를 증진시키기 위해서는 서로 다른 상간의 접촉 면적을 최대화함으로써 물질 전달을 원활하게 유지하여야 한다. 특히 Fischer-Tropsch 합성 반응에서는 반응물인 기체가 촉매로서 기능하는 고체 표면으로의 external mass transfer가 효과적으로 이루어져야 하기 때문에 반응기 내의 기체의 거동뿐만 아니라 고체인 촉매의 분포에 대한 연구가 활발하게 이루어지고 있다. 따라서 본 연구에서는 반응기 내에 기체의 superficial velocity를 변화시키면서 기체의 hold up 뿐만 아니라 고체 입자의 분포특성에 대하여 관찰하였다. Superficial velocity가 증가함에따라 gas hold up의 경우, 일정하게 증가하다가 6 cm/sec 이상에서 그 증가폭이 감소하였다. 즉 6 cm/sec이상에서 turbulent flow regime을 형성하였다. 또한 고체입자의 분포 역시 기체의 superficial velocity가 증가함에따라 보다 균일하게 되는 것을 확인할 수 있었다.

  • PDF

다양한 생물반응기에서 이타콘산의 생산 (Production of Itaconic Acid at Various Bioreactors)

  • 박승원;김승옥;이진석
    • 한국미생물·생명공학회지
    • /
    • 제22권3호
    • /
    • pp.304-308
    • /
    • 1994
  • A suitable culture method and bioreactor type for itaconic acid production were chosen by comparing the maximal concentration of itaconic acid produced in various systems. In batch culture, the maximal concentration of itaconic acid produced in a bubble column reactor was about 5% greater than that produced in stirred-tank or external-loop airlift reactor. These results were thought to be due to lower shear force and higher mass transfer efficiency in a bubble column reactor in comparison with other reactors. Moreover, the fed-batch mode in a bubble column was found to be a suitable one, producing about 25% higher concentration of itaconic acid compared to batch mode.

  • PDF