• 제목/요약/키워드: Mass Spectrum

검색결과 586건 처리시간 0.031초

Syntheses and Characterizations of Lactam Cyclophanes. Attempted Synthesis of a Lactam Catenane Using Hydrogen Bonds

  • 주경미;임혜재;백경수
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권11호
    • /
    • pp.1079-1084
    • /
    • 1995
  • New cyclophanes having multilactam linkages were synthesized and characterized. One-pot coupling reaction of 2,6-pyridinedicarbonyl dichloride and a diamine gave a tetralactam, a hexalactam, and a octalactam in good yields. The TLC behaviour, the molecular symmetry shown by 1H NMR spectrum, and the fragmentation patterns shown by FAB mass spectrum of the octalactam support its monocyclic structure.

Identifying torsional eccentricity in buildings without performing detailed structural analysis

  • Tamizharasi, G.;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • 제23권3호
    • /
    • pp.283-295
    • /
    • 2022
  • Seismic design codes permit the use of Equivalent Static Analysis of buildings considering torsional eccentricity e with dynamic amplification factors on structural eccentricity and some accidental eccentricity. Estimation of e in buildings is not addressed in codes. This paper presents a simple approximate method to estimate e in RC Moment Frame and RC Structural Wall buildings, which required no detailed structural analysis. The method is validated by 3D analysis (using commercial structural analysis software) of a spectrum of building. Results show that dynamic amplification factor should be applied on torsional eccentricity when performing Response Spectrum Analysis also. Also, irregular or mixed modes of oscillation arise in torsionally unsymmetrical buildings owing to poor geometric distribution of mass and stiffness in plan, which is captured by the mass participation ratio. These irregular modes can be avoided in buildings of any plan geometry by limiting the two critical parameters (normalised torsional eccentricity e/B and Natural Period Ratio 𝜏 =T𝜃/T, where B is building lateral dimension, T𝜃 uncoupled torsional natural period and T uncoupled translational natural period). Suggestions are made for new building code provisions.

탄성지지된 구조물의 충격 햄머 실험에서 질량선의 개선을 통한 향상된 강체 특성 규명법 (Identification of Rigid Body Properties of the Mounted Structure with Improved Mass-Lines from Impact Hammer Tests)

  • 안세진;정의봉;황대선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.317-322
    • /
    • 2002
  • There are many researches to identify the rigid body properties from the mass-line obtained by impact hammer testing. The correct rigid body properties of the structure may be estimated if the mass-line of the structure could be obtained exactly. When the structure is mounted by elastic materials, the mass-line cannot be read correctly from the impulse response spectrum. The reason is due to the effects of rigid body modes of mounted structure. In this paper, the effects of rigid body modes of mounted structure to the mass-line are discussed and the method to remove these effects is also presented.

  • PDF

Structural Analysis of [Cu(II)-amyloidogenic peptide] Complexes

  • Cha, Eugene;Seo, Jae-Hong;Kim, Ho-Tae
    • Mass Spectrometry Letters
    • /
    • 제9권1호
    • /
    • pp.17-23
    • /
    • 2018
  • Studies on the interactions of amyloidogenic proteins with trace metals, such as copper, have indicated that the metal ions perform a critical function in the early oligomerization process. Herein, we investigate the effects of Cu(II) ions on the active sequence regions of amyloidogenic proteins using electrospray ionization mass spectrometry (ESI-MS) and collision induced dissociation tandem MS (CID-MS/MS). We chose three amyloidogenic peptides NNQQNY, LYQLEN, and VQIVYK from yeast prion like protein Sup35, insulin chain A, and tau protein, respectively. [Cu-peptide] complexes for all three peptides were observed in the mass spectra. The mass spectra also show that increasing Cu(II) concentrations decrease the population of existing peptide oligomers. The tandem mass spectrum of NNQQNY shows preferential binding for the N-terminal region. All three peptides are likely to appear to be in a Cu-monomer-monomer (Cu-M-M) structure instead of a monomer-Cu-monomer (M-Cu-M) structure.

Oligomer Complexes of the (VQIVYK + NNQQNY) and (VQIVYK + LYQLEN) Mixing Solutions

  • Jung, Yeon-Ji;Shin, Min-Ji;Kim, Ho-Tae
    • Mass Spectrometry Letters
    • /
    • 제10권1호
    • /
    • pp.32-37
    • /
    • 2019
  • The ${\pi}-{\pi}$ interactions of the peptide-dimer and peptide-trimer complexes were investigated in the (VQIVYK + LYQLEN) and (VQIVYK + NNQQNY) mixing solutions. The results showed that tyrosine (Y) residues were critical in the formation of hetero peptide-dimers and -trimers during the early oligomerization process. We used collision-induced dissociation (CID) along with electrospray ionization mass spectroscopy (ESI-MS) to obtain the structural information of the hetero-dimers and -trimers. We chose three amyloidogenic peptides-VQIVYK, NNQQNY, and LYQLEN-from tau protein, yeast prion-like protein Sup35, and insulin chain A, respectively. Hetero-dimer, -trimer, -tetramer, and -pentamer complexes were observed in the mass spectra. The tandem mass spectrum of the hetero-dimer and hetero-trimer showed two different fragmentation patterns (covalent and non-covalent bond dissociation). Y-Y interaction structures were also proposed for the hetero-dimer and -trimer complexes.

Isomer Differentiation Using in silico MS2 Spectra. A Case Study for the CFM-ID Mass Spectrum Predictor

  • Milman, Boris L.;Ostrovidova, Ekaterina V.;Zhurkovich, Inna K.
    • Mass Spectrometry Letters
    • /
    • 제10권3호
    • /
    • pp.93-101
    • /
    • 2019
  • Algorithms and software for predicting tandem mass spectra have been developed in recent years. In this work, we explore how distinct in silico $MS^2$ spectra are predicted for isomers, i.e. compounds having the same formula and similar molecular structures, to differentiate between them. We used the CFM-ID 2.0/3.0 predictor with regard to (a) test compounds, whose experimental mass spectra had been randomly sampled from the MassBank of North America (MoNA) collection, and to (b) the most widespread isomers of test compounds searched in the PubChem database. In the first validation test, in silico mass spectra constitute a reference library, and library searches are performed for test experimental spectra of "unknowns". The searches led to the true positive rate (TPR) of ($46-48{\pm}10$)%. In the second test, in silico and experimental spectra were interchanged and this resulted in a TPR of ($58{\pm}10$)%. There were no significant differences between results obtained with different metrics of spectral similarity and predictor versions. In a comparison of test compounds vs. their isomers, a statistically significant correlation between mass spectral data and structural features was observed. The TPR values obtained should be regarded as reasonable results for predicting tandem mass spectra of related chemical structures.